
Chapter 10

Data Classification

“Science is the systematic classification of experience.”—George Henry Lewes

10.1 Introduction

The classification problem is closely related to the clustering problem discussed in Chaps. 6
and 7. While the clustering problem is that of determining similar groups of data points,
the classification problem is that of learning the structure of a data set of examples, already
partitioned into groups, that are referred to as categories or classes. The learning of these
categories is typically achieved with a model. This model is used to estimate the group
identifiers (or class labels) of one or more previously unseen data examples with unknown
labels. Therefore, one of the inputs to the classification problem is an example data set that
has already been partitioned into different classes. This is referred to as the training data,
and the group identifiers of these classes are referred to as class labels. In most cases, the
class labels have a clear semantic interpretation in the context of a specific application, such
as a group of customers interested in a specific product, or a group of data objects with
a desired property of interest. The model learned is referred to as the training model. The
previously unseen data points that need to be classified are collectively referred to as the
test data set. The algorithm that creates the training model for prediction is also sometimes
referred to as the learner.

Classification is, therefore, referred to as supervised learning because an example data
set is used to learn the structure of the groups, just as a teacher supervises his or her
students towards a specific goal. While the groups learned by a classification model may
often be related to the similarity structure of the feature variables, as in clustering, this
need not necessarily be the case. In classification, the example training data is paramount
in providing the guidance of how groups are defined. Given a data set of test examples,
the groups created by a classification model on the test examples will try to mirror the
number and structure of the groups available in the example data set of training instances.
Therefore, the classification problem may be intuitively stated as follows:
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Given a set of training data points, each of which is associated with a class label, deter-
mine the class label of one or more previously unseen test instances.

Most classification algorithms typically have two phases:

1. Training phase: In this phase, a training model is constructed from the training
instances. Intuitively, this can be understood as a summary mathematical model of
the labeled groups in the training data set.

2. Testing phase: In this phase, the training model is used to determine the class label
(or group identifier) of one or more unseen test instances.

The classification problem is more powerful than clustering because, unlike clustering, it
captures a user-defined notion of grouping from an example data set. Such an approach
has almost direct applicability to a wide variety of problems, in which groups are defined
naturally based on external application-specific criteria. Some examples are as follows:

1. Customer target marketing: In this case, the groups (or labels) correspond to the user
interest in a particular product. For example, one group may correspond to customers
interested in a product, and the other group may contain the remaining customers.
In many cases, training examples of previous buying behavior are available. These
can be used to provide examples of customers who may or may not be interested in a
specific product. The feature variables may correspond to the demographic profiles of
the customers. These training examples are used to learn whether or not a customer,
with a known demographic profile, but unknown buying behavior, may be interested
in a particular product.

2. Medical disease management: In recent years, the use of data mining methods in
medical research has gained increasing traction. The features may be extracted from
patient medical tests and treatments, and the class label may correspond to treatment
outcomes. In these cases, it is desired to predict treatment outcomes with models
constructed on the features.

3. Document categorization and filtering: Many applications, such as newswire services,
require real-time classification of documents. These are used to organize the docu-
ments under specific topics in Web portals. Previous examples of documents from
each topic may be available. The features correspond to the words in the document.
The class labels correspond to the various topics, such as politics, sports, current
events, and so on.

4. Multimedia data analysis: It is often desired to perform classification of large volumes
of multimedia data such as photos, videos, audio, or other more complex multimedia
data. Previous examples of particular activities of users associated with example videos
may be available. These may be used to determine whether a particular video describes
a specific activity. Therefore, this problem can be modeled as a binary classification
problem containing two groups corresponding to the occurrence or nonoccurrence of
a specific activity.

The applications of classification are diverse because of the ability to learn by example.
It is assumed that the training data set is denoted by D with n data points and d

features, or dimensions. In addition, each of the data points in D is associated with a
label drawn from {1 . . . k}. In some models, the label is assumed to be binary (k = 2) for
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simplicity. In the latter case, a commonly used convention is to assume that the labels are
drawn from {−1,+1}. However, it is sometimes notationally convenient to assume that the
labels are drawn from {0, 1}. This chapter will use either of these conventions depending
on the classifier. A training model is constructed from D, which is used to predict the label
of unseen test instances. The output of a classification algorithm can be one of two types:

1. Label prediction: In this case, a label is predicted for each test instance.

2. Numerical score: In most cases, the learner assigns a score to each instance–label
combination that measures the propensity of the instance to belong to a particular
class. This score can be easily converted to a label prediction by using either the
maximum value, or a cost-weighted maximum value of the numerical score across
different classes. One advantage of using a score is that different test instances can
be compared and ranked by their propensity to belong to a particular class. Such
scores are particularly useful in situations where one of the classes is very rare, and a
numerical score provides a way to determine the top ranked candidates belonging to
that class.

A subtle but important distinction exists in the design process of these two types of models,
especially when numerical scores are used for ranking different test instances. In the first
model, the training model does not need to account for the relative classification propensity
across different test instances. The model only needs to worry about the relative propensity
towards different labels for a specific instance. The second model also needs to properly
normalize the classification scores across different test instances so that they can be mean-
ingfully compared for ranking. Minor variations of most classification models are able to
handle either the labeling or the ranking scenario.

When the training data set is small, the performance of classification models is sometimes
poor. In such cases, the model may describe the specific random characteristics of the
training data set, and it may not generalize to the group structure of previously unseen test
instances. In other words, such models might accurately predict the labels of instances used
to construct them, but they perform poorly on unseen test instances. This phenomenon
is referred to as overfitting. This issue will be revisited several times in this chapter and
the next.

Various models have been designed for data classification. The most well-known ones
include decision trees, rule-based classifiers, probabilistic models, instance-based classifiers,
support vector machines, and neural networks. The modeling phase is often preceded by a
feature selection phase to identify the most informative features for classification. Each of
these methods will be addressed in this chapter.

This chapter is organized as follows. Section 10.2 introduces some of the common models
used for feature selection. Decision trees are introduced in Sect. 10.3. Rule-based classifiers
are introduced in Sect. 10.4. Section 10.5 discusses probabilistic models for data classi-
fication. Section 10.6 introduces support vector machines. Neural network classifiers are
discussed in Sect. 10.7. Instance-based learning methods are explained in Sect. 10.8. Eval-
uation methods are discussed in Sect. 10.9. The summary is presented in Sect. 10.10.

10.2 Feature Selection for Classification

Feature selection is the first stage in the classification process. Real data may contain
features of varying relevance for predicting class labels. For example, the gender of a person
is less relevant for predicting a disease label such as “diabetes,” as compared to his or
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her age. Irrelevant features will typically harm the accuracy of the classification model
in addition to being a source of computational inefficiency. Therefore, the goal of feature
selection algorithms is to select the most informative features with respect to the class label.
Three primary types of methods are used for feature selection in classification.

1. Filter models: A crisp mathematical criterion is available to evaluate the quality of
a feature or a subset of features. This criterion is then used to filter out irrelevant
features.

2. Wrapper models: It is assumed that a classification algorithm is available to evaluate
how well the algorithm performs with a particular subset of features. A feature search
algorithm is then wrapped around this algorithm to determine the relevant set of
features.

3. Embedded models: The solution to a classification model often contains useful hints
about the most relevant features. Such features are isolated, and the classifier is
retrained on the pruned features.

In the following discussion, each of these models will be explained in detail.

10.2.1 Filter Models

In filter models, a feature or a subset of features is evaluated with the use of a class-sensitive
discriminative criterion. The advantage of evaluating a group of features at one time is
that redundancies are well accounted for. Consider the case where two feature variables
are perfectly correlated with one another, and therefore each can be predicted using the
other. In such a case, it makes sense to use only one of these features because the other
adds no incremental knowledge with respect to the first. However, such methods are often
expensive because there are 2d possible subsets of features on which a search may need to
be performed. Therefore, in practice, most feature selection methods evaluate the features
independently of one another and select the most discriminative ones.

Some feature selection methods, such as linear discriminant analysis, create a linear
combination of the original features as a new set of features. Such analytical methods can
be viewed either as stand-alone classifiers or as dimensionality reduction methods that are
used before classification, depending on how they are used. These methods will also be
discussed in this section.

10.2.1.1 Gini Index

The Gini index is commonly used to measure the discriminative power of a particular
feature. Typically, it is used for categorical variables, but it can be generalized to numeric
attributes by the process of discretization. Let v1 . . . vr be the r possible values of a particular
categorical attribute, and let pj be the fraction of data points containing attribute value vi
that belong to the class j ∈ {1 . . . k} for the attribute value vi. Then, the Gini index G(vi)
for the value vi of a categorical attribute is defined as follows:

G(vi) = 1−
k∑

j=1

p2j . (10.1)

When the different classes are distributed evenly for a particular attribute value, the value
of the Gini index is 1 − 1/k. On the other hand, if all data points for an attribute value
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Figure 10.1: Variation of two feature selection criteria with class distribution skew

vi belong to the same class, then the Gini index is 0. Therefore, lower values of the Gini
index imply greater discrimination. An example of the Gini index for a two-class problem
for varying values of p1 is illustrated in Fig. 10.1. Note that the index takes on its maximum
value at p1 = 0.5.

The value-specific Gini index is converted into an attributewise Gini index. Let ni be
the number of data points that take on the value vi for the attribute. Then, for a data set
containing

∑r
i=1 ni = n data points, the overall Gini index G for the attribute is defined as

the weighted average over the different attribute values as follows:

G =
r∑

i=1

niG(vi)/n. (10.2)

Lower values of the Gini index imply greater discriminative power. The Gini index is typi-
cally defined for a particular feature rather than a subset of features.

10.2.1.2 Entropy

The class-based entropy measure is related to notions of information gain resulting from
fixing a specific attribute value. The entropy measure achieves a similar goal as the Gini
index at an intuitive level, but it is based on sound information-theoretic principles. As
before, let pj be the fraction of data points belonging to the class j for attribute value vi.
Then, the class-based entropy E(vi) for the attribute value vi is defined as follows:

E(vi) = −
k∑

j=1

pj log2(pj). (10.3)

The class-based entropy value lies in the interval [0, log2(k)]. Higher values of the entropy
imply greater “mixing” of different classes. A value of 0 implies perfect separation, and,
therefore, the largest possible discriminative power. An example of the entropy for a two-
class problem with varying values of the probability p1 is illustrated in Fig. 10.1. As in
the case of the Gini index, the overall entropy E of an attribute is defined as the weighted
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average over the r different attribute values:

E =
r∑

i=1

niE(vi)/n. (10.4)

Here, ni is the frequency of attribute value vi.

10.2.1.3 Fisher Score

The Fisher score is naturally designed for numeric attributes to measure the ratio of the
average interclass separation to the average intraclass separation. The larger the Fisher
score, the greater the discriminatory power of the attribute. Let μj and σj , respectively, be
the mean and standard deviation of data points belonging to class j for a particular feature,
and let pj be the fraction of data points belonging to class j. Let μ be the global mean of
the data on the feature being evaluated. Then, the Fisher score F for that feature may be
defined as the ratio of the interclass separation to intraclass separation:

F =

∑k
j=1 pj(μj − μ)2∑k

j=1 pjσ
2
j

. (10.5)

The numerator quantifies the average interclass separation, whereas the denominator quan-
tifies the average intraclass separation. The attributes with the largest value of the Fisher
score may be selected for use with the classification algorithm.

10.2.1.4 Fisher’s Linear Discriminant

Fisher’s linear discriminant may be viewed as a generalization of the Fisher score in which
newly created features correspond to linear combinations of the original features rather
than a subset of the original features. This direction is designed to have a high level of
discriminatory power with respect to the class labels. Fisher’s discriminant can be viewed
as a supervised dimensionality reduction method in contrast to PCA, which maximizes the
preserved variance in the feature space but does not maximize the class-specific discrimi-
nation. For example, the most discriminating direction is aligned with the highest variance
direction in Fig. 10.2a, but it is aligned with the lowest variance direction in Fig. 10.2b. In
each case, if the data were to be projected along the most discriminating direction W , then
the ratio of interclass to intraclass separation is maximized. How can we determine such a
d-dimensional vector W?

The selection of a direction with high discriminative power is based on the same quan-
tification as the Fisher score. Fisher’s discriminant is naturally defined for the two-class
scenario, although generalizations exist for the case of multiple classes. Let μ0 and μ1 be
the d-dimensional row vectors representing the means of the data points in the two classes,
and let Σ0 and Σ1 be the corresponding d × d covariance matrices in which the (i, j)th
entry represents the covariance between dimensions i and j for that class. The fractional
presence of the two classes are denoted by p0 and p1, respectively. Then, the equivalent
Fisher score FS(W ) for a d-dimensional row vector W may be written in terms of scatter
matrices, which are weighted versions of covariance matrices:

FS(W ) =
Between Class Scatter along W

Within Class Scatter along W
∝ (W · μ1 −W · μ0)2

p0[Variance(Class 0)] + p1[Variance(Class 1)]

=
W [(μ1 − μ0)T (μ1 − μ0)]W

T

p0[WΣ0W
T
] + p1[WΣ1W

T
]
=

[W · (μ1 − μ0)]2

W (p0Σ0 + p1Σ1)W
T
.
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(a) Discriminating direction is aligned (b) Discriminating direction is aligned
with high-variance direction with low-variance direction

Figure 10.2: Impact of class distribution on Fisher’s discriminating direction

Note that the quantity WΣiW
T

in one of the aforementioned expressions represents the
variance of the projection of a data set along W , whose covariance matrix is Σi. This result
is derived in Sect. 2.4.3.1 of Chap. 2. The rank-1 matrix Sb = [(μ1 − μ0)T (μ1 − μ0)] is
also referred1 to as the (scaled) between-class scatter-matrix and the matrix Sw = (p0Σ0 +
p1Σ1) is the (scaled) within-class scatter matrix. The quantification FS(W ) is a direct
generalization of the axis-parallel score in Eq. 10.5 to an arbitrary direction W . The goal
is to determine a direction W that maximizes the Fisher score. It can be shown2 that the
optimal direction W ∗, expressed as a row vector, is given by the following:

W ∗ ∝ (μ1 − μ0)(p0Σ0 + p1Σ1)−1. (10.6)

If desired, successive orthogonal directions may be determined by iteratively projecting the
data into the orthogonal subspace to the optimal directions found so far, and determining
the Fisher’s discriminant in this reduced subspace. The final result is a new representation
of lower dimensionality that is more discriminative than the original feature space. Inter-
estingly, the matrix Sw + p0p1Sb can be shown to be invariant to the values of the class
labels of the data points (see Exercise 21), and it is equal to the covariance matrix of the
data. Therefore, the top-k eigenvectors of Sw + p0p1Sb yield the basis vectors of PCA.

This approach is often used as a stand-alone classifier, which is referred to as linear
discriminant analysis. A perpendicular hyperplaneW ∗ ·X+b = 0 to the most discriminating
direction is used as a binary class separator. The optimal value of b is selected based on the
accuracy with respect to the training data. This approach can also be viewed as projecting
the training points along the most discriminating vector W ∗, and then selecting the value of
b to decide the point on the line that best separates the two classes. The Fisher’s discriminant
for binary classes can be shown to be a special case of least-squares regression for numeric
classes, in which the response variables are set to −1/p0 and +1/p1, respectively, for the
two classes (cf. Sect. 11.5.1.1 of Chap. 11).

1The unscaled versions of the two scatter matrices are np0p1Sb and nSw, respectively. The sum of these
two matrices is the total scatter matrix, which is n times the covariance matrix (see Exercise 21).

2Maximizing FS(W ) = WSbW
T

WSwW
T is the same as maximizing WSbW

T
subject to WSwW

T
= 1. Setting

the gradient of the Lagrangian relaxation WSbW
T −λ(WSwW

T −1) to 0 yields the generalized eigenvector

condition SbW
T

= λSwW
T
. Because SbW

T
= (μ1

T − μ0
T )

[
(μ1 − μ0)W

T
]
always points in the direction

of (μ1
T − μ0

T ), it follows that SwW
T ∝ μ1

T − μ0
T . Therefore, we have W ∝ (μ1 − μ0)S

−1
w .
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10.2.2 Wrapper Models

Different classification models are more accurate with different sets of features. Filter models
are agnostic to the particular classification algorithm being used. In some cases, it may be
useful to leverage the characteristics of the specific classification algorithm to select features.
As you will learn later in this chapter, a linear classifier may work more effectively with a set
of features where the classes are best modeled with linear separators, whereas a distance-
based classifier works well with features in which distances reflect class distributions.

Therefore, one of the inputs to wrapper-based feature selection is a specific classifica-
tion induction algorithm, denoted by A. Wrapper models can optimize the feature selection
process to the classification algorithm at hand. The basic strategy in wrapper models is to
iteratively refine a current set of features F by successively adding features to it. The algo-
rithm starts by initializing the current feature set F to {}. The strategy may be summarized
by the following two steps that are executed iteratively:

1. Create an augmented set of features F by adding one or more features to the current
feature set.

2. Use a classification algorithm A to evaluate the accuracy of the set of features F . Use
the accuracy to either accept or reject the augmentation of F .

The augmentation of F can be performed in many different ways. For example, a greedy
strategy may be used where the set of features in the previous iteration is augmented with
an additional feature with the greatest discriminative power with respect to a filter criterion.
Alternatively, features may be selected for addition via random sampling. The accuracy of
the classification algorithm A in the second step may be used to determine whether the
newly augmented set of features should be accepted, or one should revert to the set of
features in the previous iteration. This approach is continued until there is no improvement
in the current feature set for a minimum number of iterations. Because the classification
algorithm A is used in the second step for evaluation, the final set of identified features will
be sensitive to the choice of the algorithm A.

10.2.3 Embedded Models

The core idea in embedded models is that the solutions to many classification formulations
provide important hints about the most relevant features to be used. In other words, knowl-
edge about the features is embedded within the solution to the classification problem. For
example, consider a linear classifier that maps a training instance X to a class label yi in
{−1, 1} using the following linear relationship:

yi = sign{W ·X + b}. (10.7)

Here, W = (w1, . . . wd) is a d-dimensional vector of coefficients, and b is a scalar that is
learned from the training data. The function “sign” maps to either −1 or +1, depending
on the sign of its argument. As we will see later, many linear models such as Fisher’s
discriminant, support vector machine (SVM) classifiers, logistic regression methods, and
neural networks use this model.

Assume that all features have been normalized to unit variance. If the value of |wi| is
relatively3 small, the ith feature is used very weakly by the model and is more likely to be
noninformative. Therefore, such dimensions may be removed. It is then possible to train the

3Certain variations of linear models, such as L1-regularized SVMs or Lasso (cf. Sect. 11.5.1 of Chap.
11), are particularly effective in this context. Such methods are also referred to as sparse learning methods.
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Table 10.1: Training data snapshot relating the salary and age features to charitable dona-
tion propensity

Name Age Salary Donor?

Nancy 21 37,000 N
Jim 27 41,000 N
Allen 43 61,000 Y
Jane 38 55,000 N
Steve 44 30,000 N
Peter 51 56,000 Y
Sayani 53 70,000 Y
Lata 56 74,000 Y
Mary 59 25,000 N
Victor 61 68,000 Y
Dale 63 51,000 Y

same (or a different) classifier on the data with the pruned feature set. If desired, statistical
tests may be used to decide when the value of |wi| should be considered sufficiently small.
Many decision tree classifiers, such as ID3, also have feature selection methods embedded
in them.

In recursive feature elimination, an iterative approach is used. A small number of features
are removed in each iteration. Then, the classifier is retrained on the pruned set of features
to re-estimate the weights. The re-estimated weights are used to again prune the features
with the least absolute weight. This procedure is repeated until all remaining features are
deemed to be sufficiently relevant. Embedded models are generally designed in an ad hoc
way, depending on the classifier at hand.

10.3 Decision Trees

Decision trees are a classification methodology, wherein the classification process is modeled
with the use of a set of hierarchical decisions on the feature variables, arranged in a tree-like
structure. The decision at a particular node of the tree, which is referred to as the split
criterion, is typically a condition on one or more feature variables in the training data. The
split criterion divides the training data into two or more parts. For example, consider the
case where Age is an attribute, and the split criterion is Age ≤ 30. In this case, the left
branch of the decision tree contains all training examples with age at most 30, whereas the
right branch contains all examples with age greater than 30. The goal is to identify a split
criterion so that the level of “mixing” of the class variables in each branch of the tree is
reduced as much as possible. Each node in the decision tree logically represents a subset of
the data space defined by the combination of split criteria in the nodes above it. The decision
tree is typically constructed as a hierarchical partitioning of the training examples, just as a
top-down clustering algorithm partitions the data hierarchically. The main difference from
clustering is that the partitioning criterion in the decision tree is supervised with the class
label in the training instances. Some classical decision tree algorithms include C4.5, ID3,
and CART. To illustrate the basic idea of decision tree construction, an illustrative example
will be used.

In Table 10.1, a snapshot of a hypothetical charitable donation data set has been illus-
trated. The two feature variables represent the age and salary attributes. Both attributes
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are related to the donation propensity, which is also the class label. Specifically, the like-
lihood of an individual to donate is positively correlated with his or her age and salary.
However, the best separation of the classes may be achieved only by combining the two
attributes. The goal in the decision tree construction process is to perform a sequence of
splits in top-down fashion to create nodes at the leaf level in which the donors and non-
donors are separated well. One way of achieving this goal is depicted in Fig. 10.3a. The
figure illustrates a hierarchical arrangement of the training examples in a treelike structure.
The first-level split uses the age attribute, whereas the second-level split for both branches
uses the salary attribute. Note that different splits at the same decision tree level need not
be on the same attribute. Furthermore, the decision tree of Fig. 10.3a has two branches at
each node, but this need not always be the case. In this case, the training examples in all
leaf nodes belong to the same class, and, therefore, there is no point in growing the decision
tree beyond the leaf nodes. The splits shown in Fig. 10.3a are referred to as univariate splits
because they use a single attribute. To classify a test instance, a single relevant path in the
tree is traversed in top-down fashion by using the split criteria to decide which branch to
follow at each node of the tree. The dominant class label in the leaf node is reported as
the relevant class. For example, a test instance with age less than 50 and salary less than
60,000 will traverse the leftmost path of the tree in Fig. 10.3a. Because the leaf node of this
path contains only nondonor training examples, the test instance will also be classified as
a nondonor.

Multivariate splits use more than one attribute in the split criteria. An example is
illustrated in Fig. 10.3b. In this particular case, a single split leads to full separation of
the classes. This suggests that multivariate criteria are more powerful because they lead to
shallower trees. For the same level of class separation in the training data, shallower trees
are generally more desirable because the leaf nodes contain more examples and, therefore,
are statistically less likely to overfit the noise in the training data.

A decision tree induction algorithm has two types of nodes, referred to as the internal
nodes and leaf nodes. Each leaf node is labeled with the dominant class at that node. A
special internal node is the root node that corresponds to the entire feature space. The
generic decision tree induction algorithm starts with the full training data set at the root
node and recursively partitions the data into lower level nodes based on the split criterion.
Only nodes that contain a mixture of different classes need to be split further. Eventually,
the decision tree algorithm stops the growth of the tree based on a stopping criterion. The
simplest stopping criterion is one where all training examples in the leaf belong to the same
class. One problem is that the construction of the decision tree to this level may lead to
overfitting, in which the model fits the noisy nuances of the training data. Such a tree will not
generalize to unseen test instances very well. To avoid the degradation in accuracy associated
with overfitting, the classifier uses a postpruning mechanism for removing overfitting nodes.
The generic decision tree training algorithm is illustrated in Fig. 10.4.

After a decision tree has been constructed, it is used for classification of unseen test
instances with the use of top-down traversal from the root to a unique leaf. The split
condition at each internal node is used to select the correct branch of the decision tree for
further traversal. The label of the leaf node that is reached is reported for the test instance.

10.3.1 Split Criteria

The goal of the split criterion is to maximize the separation of the different classes among
the children nodes. In the following, only univariate criteria will be discussed. Assume that
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Figure 10.3: Illustration of univariate and multivariate splits for decision tree construction

a quality criterion for evaluating a split is available. The design of the split criterion depends
on the nature of the underlying attribute:

1. Binary attribute: Only one type of split is possible, and the tree is always binary. Each
branch corresponds to one of the binary values.

2. Categorical attribute: If a categorical attribute has r different values, there are multiple
ways to split it. One possibility is to use an r-way split, in which each branch of the
split corresponds to a particular attribute value. The other possibility is to use a
binary split by testing each of the 2r − 1 combinations (or groupings) of categorical
attributes, and selecting the best one. This is obviously not a feasible option when the
value of r is large. A simple approach that is sometimes used is to convert categorical
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Algorithm GenericDecisionTree(Data Set: D)
begin
Create root node containing D;
repeat
Select an eligible node in the tree;
Split the selected node into two or more nodes

based on a pre-defined split criterion;
until no more eligible nodes for split;
Prune overfitting nodes from tree;
Label each leaf node with its dominant class;

end

Figure 10.4: Generic decision tree training algorithm

data to binary data with the use of the binarization approach discussed in Chap. 2.
In this case, the approach for binary attributes may be used.

3. Numeric attribute: If the numeric attribute contains a small number r of ordered
values (e.g., integers in a small range [1, r]), it is possible to create an r-way split for
each distinct value. However, for continuous numeric attributes, the split is typically
performed by using a binary condition, such as x ≤ a, for attribute value x and
constant a.

Consider the case where a node containsm data points. Therefore, there arem possible
split points for the attribute, and the corresponding values of a may be determined
by sorting the data in the node along this attribute. One possibility is to test all the
possible values of a for a split and select the best one. A faster alternative is to test
only a smaller set of possibilities for a, based on equi-depth division of the range.

Many of the aforementioned methods requires the determination of the “best” split from
a set of choices. Specifically, it is needed to choose from multiple attributes and from the
various alternatives available for splitting each attribute. Therefore, quantifications of split
quality are required. These quantifications are based on the same principles as the feature
selection criteria discussed in Sect. 10.2.

1. Error rate: Let p be the fraction of the instances in a set of data points S belonging
to the dominant class. Then, the error rate is simply 1− p. For an r-way split of set S
into sets S1 . . . Sr, the overall error rate of the split may be quantified as the weighted
average of the error rates of the individual sets Si, where the weight of Si is |Si|. The
split with the lowest error rate is selected from the alternatives.

2. Gini index: The Gini index G(S) for a set S of data points may be computed according
to Eq. 10.1 on the class distribution p1 . . . pk of the training data points in S.

G(S) = 1−
k∑

j=1

p2j (10.8)

The overall Gini index for an r-way split of set S into sets S1 . . . Sr may be quantified
as the weighted average of the Gini index values G(Si) of each Si, where the weight
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of Si is |Si|.

Gini-Split(S ⇒ S1 . . . Sr) =
r∑

i=1

|Si|
|S| G(Si) (10.9)

The split with the lowest Gini index is selected from the alternatives. The CART
algorithm uses the Gini index as the split criterion.

3. Entropy: The entropy measure is used in one of the earliest classification algorithms,
referred to as ID3. The entropy E(S) for a set S may be computed according to
Eq. 10.3 on the class distribution p1 . . . pk of the training data points in the node.

E(S) = −
k∑

j=1

pj log2(pj) (10.10)

As in the case of the Gini index, the overall entropy for an r-way split of set S into
sets S1 . . . Sr may be computed as the weighted average of the Gini index values G(Si)
of each Si, where the weight of Si is |Si|.

Entropy-Split(S ⇒ S1 . . . Sr) =
r∑

i=1

|Si|
|S| E(Si) (10.11)

Lower values of the entropy are more desirable. The entropy measure is used by the
ID3 and C4.5 algorithms.

The information gain is closely related to entropy, and is equal to the reduction in the
entropy E(S) − Entropy-Split(S ⇒ S1 . . . Sr) as a result of the split. Large values of
the reduction are desirable. At a conceptual level, there is no difference between using
either of the two for a split although a normalization for the degree of the split is
possible in the case of information gain. Note that the entropy and information gain
measures should be used only to compare two splits of the same degree because both
measures are naturally biased in favor of splits with larger degree. For example, if a
categorical attribute has many values, attributes with many values will be preferred. It
has been shown by the C4.5 algorithm that dividing the overall information gain with
the normalization factor of −

∑r
i=1

|Si|
|S| log2(

|Si|
|S| ) helps in adjusting for the varying

number of categorical values.

The aforementioned criteria are used to select the choice of the split attribute and the
precise criterion on the attribute. For example, in the case of a numeric database, different
split points are tested for each numeric attribute, and the best split is selected.

10.3.2 Stopping Criterion and Pruning

The stopping criterion for the growth of the decision tree is intimately related to the under-
lying pruning strategy. When the decision tree is grown to the very end until every leaf node
contains only instances belonging to a particular class, the resulting decision tree exhibits
100% accuracy on instances belonging to the training data. However, it often generalizes
poorly to unseen test instances because the decision tree has now overfit even to the random
characteristics in the training instances. Most of this noise is contributed by the lower level
nodes, which contain a smaller number of data points. In general, simpler models (shallow
decision trees) are preferable to more complex models (deep decision trees) if they produce
the same error on the training data.
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To reduce the level of overfitting, one possibility is to stop the growth of the tree early.
Unfortunately, there is no way of knowing the correct point at which to stop the growth
of the tree. Therefore, a natural strategy is to prune overfitting portions of the decision
tree and convert internal nodes to leaf nodes. Many different criteria are available to decide
whether a node should be pruned. One strategy is to explicitly penalize model complexity
with the use of the minimum description length principle (MDL). In this approach, the cost
of a tree is defined by a weighted sum of its (training data) error and its complexity (e.g.,
the number of nodes). Information-theoretic principles are used to measure tree complexity.
Therefore, the tree is constructed to optimize the cost rather than only the error. The main
problem with this approach is that the cost function is itself a heuristic that does not work
consistently well across different data sets. A simpler and more intuitive strategy is to a
hold out a small fraction (say 20%) of the training data and build the decision tree on the
remaining data. The impact of pruning a node on the classification accuracy is tested on the
holdout set. If the pruning improves the classification accuracy, then the node is pruned.
Leaf nodes are iteratively pruned until it is no longer possible to improve the accuracy
with pruning. Although such an approach reduces the amount of training data for building
the tree, the impact of pruning generally outweighs the impact of training-data loss in the
tree-building phase.

10.3.3 Practical Issues

Decision trees are simple to implement and highly interpretable. They can model arbitrarily
complex decision boundaries, given sufficient training data. Even a univariate decision tree
can model a complex decision boundary with piecewise approximations by building a suffi-
ciently deep tree. The main problem is that the amount of training data required to properly
approximate a complex boundary with a treelike model is very large, and it increases with
data dimensionality. With limited training data, the resulting decision boundary is usually
a rather coarse approximation of the true boundary. Overfitting is common in such cases.
This problem is exacerbated by the sensitivity of the decision tree to the split criteria at
the higher levels of the tree. A closely related family of classifiers, referred to as rule-based
classifiers, is able to alleviate these effects by moving away from the strictly hierarchical
structure of a decision tree.

10.4 Rule-Based Classifiers

Rule-based classifiers use a set of “if–then” rules R = {R1 . . . Rm} to match antecedents to
consequents. A rule is typically expressed in the following form:

IF Condition THEN Conclusion.

The condition on the left-hand side of the rule, also referred to as the antecedent, may
contain a variety of logical operators, such as <, ≤, >, =, ⊆, or ∈, which are applied to
the feature variables. The right-hand side of the rule is referred to as the consequent, and
it contains the class variable. Therefore, a rule Ri is of the form Qi ⇒ c where Qi is the
antecedent, and c is the class variable. The “⇒” symbol denotes the “THEN” condition.
The rules are generated from the training data during the training phase. The notation Qi

represents a precondition on the feature set. In some classifiers, such as association pattern
classifiers, the precondition may correspond to a pattern in the feature space, though this
may not always be the case. In general, the precondition may be any arbitrary condition
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on the feature variables. These rules are then used to classify a test instance. A rule is
said to cover a training instance when the condition in its antecedent matches the training
instance.

A decision tree may be viewed as a special case of a rule-based classifier, in which each
path of the decision tree corresponds to a rule. For example, the decision tree in Fig. 10.3a
corresponds to the following set of rules:

Age ≤ 50 AND Salary ≤ 60, 000 ⇒ ¬Donor
Age ≤ 50 AND Salary > 60, 000 ⇒ Donor
Age > 50 AND Salary ≤ 50, 000 ⇒ ¬Donor
Age > 50 AND Salary > 50, 000 ⇒ Donor

Note that each of the four aforementioned rules corresponds to a path in the decision
tree of Fig. 10.3a. The logical expression on the left is expressed in conjunctive form, with
a set of “AND” logical operators. Each of the primitive conditions in the antecedent, (such
as Age ≤ 50) is referred to as a conjunct. The rule set from a training data set is not unique
and depends on the specific algorithm at hand. For example, only two rules are generated
from the decision tree in Fig. 10.3b.

Age/50 + Salary/50, 000 ≤ 2 ⇒ ¬Donor
Age/50 + Salary/50, 000 > 2 ⇒ Donor

As in decision trees, succinct rules, both in terms of the cardinality of the rule set and
the number of conjuncts in each rule, are generally more desirable. This is because such
rules are less likely to overfit the data, and will generalize well to unseen test instances.
Note that the antecedents on the left-hand side always correspond to a rule condition. In
many rule-based classifiers, such as association-pattern classifiers, the logical operators such
as “⊆” are implicit and are omitted from the rule antecedent description. For example, con-
sider the case where the age and salary are discretized into categorical attribute values.

Age [50 : 60], Salary [50, 000 : 60, 000] ⇒ Donor

In such a case, the discretized attributes for age and salary will be represented as “items,”
and an association pattern-mining algorithm can discover the itemset on the left-hand side.
The operator “⊆” is implicit in the rule antecedent. Associative classifiers are discussed in
detail later in this section.

The training phase of a rule-based algorithm creates a set of rules. The classification
phase for a test instance discovers all rules that are triggered by the test instance. A rule
is said to be triggered by the test instance when the logical condition in the antecedent is
satisfied by the test instance. In some cases, rules with conflicting consequent values are
triggered by the test instance. In such cases, methods are required to resolve the conflicts
in class label prediction. Rule sets may satisfy one or more of the following properties:

1. Mutually exclusive rules: Each rule covers a disjoint partition of the data. Therefore,
at most one rule can be triggered by a test instance. The rules generated from a
decision tree satisfy this property. However, if the extracted rules are subsequently
modified to reduce overfitting (as in some classifiers such as C4.5rules), the resulting
rules may no longer remain mutually exclusive.

2. Exhaustive rules: The entire data space is covered by at least one rule. Therefore,
every test instance triggers at least one rule. The rules generated from a decision tree
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also satisfy this property. It is usually easy to construct an exhaustive rule set by
creating a single catch-all rule whose consequent contains the dominant class in the
portion of the training data not covered by other rules.

It is relatively easy to perform the classification when a rule set satisfies both the aforemen-
tioned properties. The reason for this is that each test instance maps to exactly one rule,
and there are no conflicts in class predictions by multiple rules. In cases where rule sets are
not mutually exclusive, conflicts in the rules triggered by a test instance can be resolved in
one of two ways:

1. Rule ordering: The rules are ordered by priority, which may be defined in a variety of
ways. One possibility is to use a quality measure of the rule for ordering. Some popular
classification algorithms, such as C4.5rules and RIPPER, use class-based ordering,
where rules with a particular class are prioritized over the other. The resulting set of
ordered rules is also referred to as a decision list. For an arbitrary test instance, the
class label in the consequent of the top triggered rule is reported as the relevant one
for the test instance. Any other triggered rule is ignored. If no rule is triggered then
a default catch-all class is reported as the relevant one.

2. Unordered rules: No priority is imposed on the rule ordering. The dominant class
label among all the triggered rules may be reported. Such an approach can be more
robust because it is not sensitive to the choice of the single rule selected by a rule-
ordering scheme. The training phase is generally more efficient because all rules can
be extracted simultaneously with pattern-mining techniques without worrying about
relative ordering. Ordered rule-mining algorithms generally have to integrate the rule
ordering into the rule generation process with methods such as sequential covering,
which are computationally expensive. On the other hand, the testing phase of an
unordered approach can be more expensive because of the need to compare a test
instance against all the rules.

How should the different rules be ordered for test instance classification? The first possibility
is to order the rules on the basis of a quality criterion, such as the confidence of the rule, or
a weighted measure of the support and confidence. However, this approach is rarely used.
In most cases, the rules are ordered by class. In some rare class applications, it makes sense
to order all rules belonging to the rare class first. Such an approach is used by RIPPER.
In other classifiers, such as C4.5rules, various accuracy and information-theoretic measures
are used to prioritize classes.

10.4.1 Rule Generation from Decision Trees

As discussed earlier in this section, rules can be extracted from the different paths in a
decision tree. For example, C4.5rules extracts the rules from the C4.5 decision tree. The
sequence of split criteria on each path of the decision tree corresponds to the antecedent
of a corresponding rule. Therefore, it would seem at first sight that rule ordering is not
needed because the generated rules are exhaustive and mutually exclusive. However, the
rule-extraction process is followed by a rule-pruning phase in which many conjuncts are
pruned from the rules to reduce overfitting. Rules are processed one by one, and conjuncts
are pruned from them in greedy fashion to improve the accuracy as much as possible on the
covered examples in a separate holdout validation set. This approach is similar to decision
tree pruning except that one is no longer restricted to pruning the conjuncts at the lower
levels of the decision tree. Therefore, the pruning process is more flexible than that of a
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decision tree, because it is not restricted by an underlying tree structure. Duplicate rules
may result from pruning of conjuncts. These rules are removed. The rule-pruning phase
increases the coverage of the individual rules and, therefore, the mutually exclusive nature
of the rules is lost. As a result, it again becomes necessary to order the rules.

In C4.5rules, all rules that belong to the class whose rule set has the smallest description
length are prioritized over other rules. The total description length of a rule set is a weighted
sum of the number of bits required to encode the size of the model (rule set) and the number
of examples covered by the class-specific rule set in the training data, which belong to a
different class. Typically, classes with a smaller number of training examples are favored
by this approach. A second approach is to order the class first whose rule set has the least
number of false-positive errors on a separate holdout set. A rule-based version of a decision
tree generally allows the construction of a more flexible decision boundary with limited
training data than the base tree from which the rules are generated. This is primarily because
of the greater flexibility in the model which is no longer restrained by the straitjacket of an
exhaustive and mutually exclusive rule set. As a result, the approach generalizes better to
unseen test instances.

10.4.2 Sequential Covering Algorithms

Sequential covering methods are used frequently for creating ordered rule lists. Thus, in this
case, the classification process uses the top triggered rule to classify unseen test instances.
Examples of sequential covering algorithms include AQ, CN2, and RIPPER. The sequential
covering approach iteratively applies the following two steps to grow the rules from the
training data set D until a stopping criterion is met:

1. (Learn-One-Rule) Select a particular class label and determine the “best” rule from
the current training instances D with this class label as the consequent. Add this rule
to the bottom of the ordered rule list.

2. (Prune training data) Remove the training instances in D that are covered by the rule
learned in the previous step. All training instances matching the antecedent of the rule
must be removed, whether or not the class label of the training instance matches the
consequent.

The aforementioned generic description applies to all sequential covering algorithms. The
various sequential covering algorithms mainly differ in the details of how the rules are
ordered with respect to each other.

1. Class-based ordering: In most sequential covering algorithms such as RIPPER, all
rules corresponding to a particular class are generated and placed contiguously on
the ordered list. Typically, rare classes are ordered first. Therefore, classes that are
placed earlier on the list may be favored more than others. This can sometimes cause
artificially lower accuracy for test instances belonging to the less favored class.

When class-based ordering is used, the rules for a particular class are generated con-
tiguously. The addition of rules for each class has a stopping criterion that is algorithm
dependent. For example, RIPPER uses an MDL criterion that stops adding rules when
further addition increases the description length of the model by at least a predefined
number of units. Another simpler stopping criterion is when the error rate of the next
generated rule on a separate validation set exceeds a predefined threshold. Finally, one
might simply use a threshold on the number of uncovered training instances remain-
ing for a class as the class-specific stopping criterion. When the number of uncovered



302 CHAPTER 10. DATA CLASSIFICATION

training instances remaining for a class falls below a threshold, rules for that class
consequent are no longer grown. At this point, rules corresponding to the next class
are grown. For a k-class problem, this approach is repeated (k − 1) times. Rules for
the kth class are not grown. The least prioritized rule is a single catch-all rule with
its consequent as the kth class. When the test instance does not fire rules belonging
to the other classes, this class is assumed as the relevant label.

2. Quality-based ordering: In some covering algorithms, class-based ordering is not used.
A quality measure is used to select the next rule. For example, one might generate
the rule with the highest confidence in the remaining training data. The catch-all rule
corresponds to the dominant class among remaining test instances. Quality-based
ordering is rarely used in practice because of the difficulty in interpreting a quality
criterion which is defined only over the remaining test instances.

Because class-based ordering is more common, the Learn-One-Rule procedure will be
described under this assumption.

10.4.2.1 Learn-One-Rule

The Learn-One-Rule procedure grows rules from the general to the specific, in much the
same way a decision tree grows a tree hierarchically from general nodes to specific nodes.
Note that a path in a decision tree is a rule in which the antecedent corresponds to the
conjunction of the split criteria at the different nodes, and the consequent corresponds to
the label of the leaf nodes. While a decision tree grows many different disjoint paths at
one time, the Learn-One-Rule procedure grows a single “best” path. This is yet another
example of the close relationship between decision trees and rule-based methods.

The idea of Learn-One-Rule is to successively add conjuncts to the left-hand side of the
rule to grow a single decision path (rather than a decision tree) based on a quality criterion.
The root of the tree corresponds to the rule {} ⇒ c. The class c represents the consequent
of the rule being grown. In the simplest version of the procedure, a single path is grown
at one time by successively adding conjuncts to the antecedent. In other words, conjuncts
are added to increase the quality as much as possible. The simplest quality criterion is the
accuracy of the rule. The problem with this criterion is that rules with high accuracy but
very low coverage are generally not desirable because of overfitting. The precise choice of
the quality criterion that regulates the trade-off between accuracy and coverage will be
discussed in detail later. As in the case of a decision tree, various logical conditions (or
split choices) must be tested to determine the best conjunct to be added. The process of
enumeration of the various split choices is similar to a decision tree. The rule is grown until
a particular stopping criterion is met. A natural stopping criterion is one where the quality
of the rule does not improve by further growth.

One challenge with the use of this procedure is that if a mistake is made early on
during tree growth, it will lead to suboptimal rules. One way of reducing the likelihood of
suboptimal rules is to always maintain the m best paths during rule-growth rather than
a single one. An example of rule growth with the use of a single decision path, for the
donor example of Table 10.1, is illustrated in Fig. 10.5. In this case, the rule is grown for
the donor class. The first conjunct added is Age > 50, and the second conjunct added is
Salary > 50, 000. Note the intuitive similarity between the decision tree of Figs. 10.3a and
10.5.

It remains to describe the quality criterion for the growth of the paths during the Learn-
One-Rule procedure. On what basis is a particular path selected over the others? The
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Salary > 50 000

{ } Donor

Salary > 50,000
Age < 50

Age > 50 Salary < 50,000

(Age > 50) Donor

Salary < 50,000
Salary > 50,000

(Age > 50 ) AND (Salary > 50,000) Donor

Figure 10.5: Rule growth is analogous to decision tree construction

similarity between rule growth and decision trees suggests the use of analogous measures
such as the accuracy, entropy, or the Gini index, as used for split criteria in decision trees.

The criteria do need to be modified because a rule is relevant only to the training exam-
ples covered by the antecedent and the single class in the consequent, whereas decision tree
splits are evaluated with respect to all training examples at a given node and all classes.
Furthermore, decision tree split measures do not need to account for issues such as the
coverage of the rule. One would like to determine rules with high coverage in order to avoid
overfitting. For example, a rule that covers only a single training instance will always have
100% accuracy, but it does not usually generalize well to unseen test instances. There-
fore, one strategy is to combine the accuracy and coverage criteria into a single integrated
measure.

The simplest combination approach is to use Laplacian smoothing with a parameter β
that regulates the level of smoothing in a training data set with k classes:

Laplace(β) =
n+ + β

n+ + n− + kβ
. (10.12)

The parameter β > 0 controls the level of smoothing, n+ represents the number of cor-
rectly classified (positive) examples covered by the rule and n− represents the number of
incorrectly classified (negative) examples covered by the rule. Therefore, the total number
of covered examples is n+ + n−. For cases where the absolute number of covered exam-
ples n+ + n− is very small, Laplacian smoothing penalizes the accuracy to account for the
unreliability of low coverage. Therefore, the measure favors greater coverage.

A second possibility is the likelihood ratio statistic. Let nj be the observed number of
training data points covered by the rule that belong to class j, and let ne

j be the expected
number of covered examples that would belong to class j, if the class distribution of the
covered examples is the same as the full training data. In other words, if p1 . . . pk be the
fraction of examples belonging to each class in the full training data, then we have:

ne
i = pi

k∑
i=1

ni. (10.13)
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Then, for a k-class problem, the likelihood ratio statistic R may be computed as follows:

R = 2
k∑

j=1

nj log(nj/n
e
j). (10.14)

When the distribution of classes in the covered examples is significantly different than that
in the original training data, the value of R increases. Therefore, the statistic tends to
favor covered examples whose distributions are very different from the original training
data. Furthermore, the presence of raw frequencies n1 . . . nk as multiplicative factors of the
individual terms in the right-hand side of Eq. 10.14 ensures that larger rule coverage is
rewarded. This measure is used by the CN2 algorithm.

Another criterion is FOIL’s information gain. The term “FOIL” stands for first order
inductive learner. Consider the case where a rule covers n+

1 positive examples and n−
1

negative examples, where positive examples are defined as training examples matching the
class in the consequent. Consider the case where the addition of a conjunct to the antecedent
changes the number of positive examples and negative examples to n+

2 and n−
2 , respectively.

Then, FOIL’s information gain FG is defined as follows:

FG = n+
2

(
log2

n+
2

n+
2 + n−

2

− log2
n+
1

n+
1 + n−

1

)
. (10.15)

This measure tends to select rules with high coverage because n+
2 is a multiplicative factor

in FG. At the same time, the information gain increases with higher accuracy because of
the term inside the parentheses. This particular measure is used by the RIPPER algorithm.

As in the case of decision trees, it is possible to grow the rules until 100% accuracy is
achieved on the training data, or when the added conjunct does not improve the accuracy
of the rule. Another criterion used by RIPPER is that the minimum description length of
the rule must not increase by more than a certain threshold because of the addition of a
conjunct. The description length of a rule is defined by a weighted function of the size of
the conjuncts and the misclassified examples.

10.4.3 Rule Pruning

Rule-pruning is relevant not only for rules generated by the Learn-One-Rule method, but
also for methods such as C4.5rules that extract the rules from a decision tree. Irrespective
of the approach used to extract the rules, overfitting may result from the presence of too
many conjuncts. As in decision tree pruning, the MDL principle can be used for pruning. For
example, for each conjunct in the rule, one can add a penalty term δ to the quality criterion
in the rule-growth phase. This will result in a pessimistic error rate. Rules with many
conjuncts will therefore have larger aggregate penalties to account for their greater model
complexity. A simpler approach for computing pessimistic error rates is to use a separate
holdout validation set that is used for computing the error rate (without a penalty) but is
not used by Learn-One-Rule during rule generation.

The conjuncts successively added during rule growth (in sequential covering) are then
tested for pruning in reverse order. If pruning reduces the pessimistic error rate on the train-
ing examples covered by the rule, then the generalized rule is used. While some algorithms
such as RIPPER test the most recently added conjunct first for rule pruning, it is not a
strict requirement to do so. It is possible to test the conjuncts for removal in any order, or
in greedy fashion, to reduce the pessimistic error rate as much as possible. Rule pruning
may result in some of the rules becoming identical. Duplicate rules are removed from the
rule set before classification.
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10.4.4 Associative Classifiers

Associative classifiers are a popular strategy because they rely on association pattern
mining, for which many efficient algorithmic alternatives exist. The reader is referred to
Chap. 4 for algorithms on association pattern mining. The discussion below assumes binary
attributes, though any data type can be converted to binary attributes with the process
of discretization and binarization, as discussed in Chap. 2. Furthermore, unlike sequential
covering algorithms in which rules are always ordered, the rules created by associative clas-
sifiers may be either ordered or unordered, depending upon application-specific criteria. The
main characteristic of class-based association rules is that they are mined in the same way
as regular association rules, except that they have a single class variable in the consequent.
The basic strategy for an associative classifier is as follows:

1. Mine all class-based association rules at a given level of minimum support and confi-
dence.

2. For a given test instance, use the mined rules for classification.

A variety of choices exist for the implementation of both steps. A naive way of implementing
the first step would be to mine all association rules and then filter out only the rules in which
the consequent corresponds to an individual class. However, such an approach is rather
wasteful because it generates many rules with nonclass consequents. Furthermore, there is
significant redundancy in the rule set because many rules that have 100% confidence are
special cases of other rules with 100% confidence. Therefore, pruning methods are required
during the rule-generation process.

The classification based on associations (CBA) approach uses a modification of the
Apriori method to generate associations that satisfy the corresponding constraints. The
first step is to generate 1-rule-items. These are newly created items corresponding to com-
binations of items and class attributes. These rule items are then extended using traditional
Apriori-style processing. Another modification is that, when patterns are generated corre-
sponding to rules with 100% confidence, those rules are not extended in order to retain
greater generality in the rule set. This broader approach can be used in conjunction with
almost any tree enumeration algorithm. The bibliographic notes contain pointers to several
recent algorithms that use other frequent pattern mining methods for rule generation.

The second step of associative classification uses the generated rule set to make pre-
dictions for unseen test instances. Both ordered or unordered strategies may be used. The
ordered strategy prioritizes the rules on the basis of the support (analogous to coverage),
and the confidence (analogous to accuracy). A variety of heuristics may be used to create
an integrated measure for ordering, such as using a weighted combination of support and
confidence. The reader is referred to Chap. 17 for discussion of a representative rule-based
classifier, XRules, which uses different types of measures. After the rules have been ordered,
the top m matching rules to the test instance are determined. The dominant class label from
the matching rules is reported as the relevant one for the test instance. A second strategy
does not order the rules but determines the dominant class label from all the triggered rules.
Other heuristic strategies may weight the rules differently, depending on their support and
confidence, for the prediction process. Furthermore, many variations of associative classifiers
do not use the support or confidence for mining the rules, but directly use class-based dis-
criminative methods for pattern mining. The bibliographic notes contain pointers to these
methods.
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10.5 Probabilistic Classifiers

Probabilistic classifiers construct a model that quantifies the relationship between the fea-
ture variables and the target (class) variable as a probability. There are many ways in which
such a modeling can be performed. Two of the most popular models are as follows:

1. Bayes classifier: The Bayes rule is used to model the probability of each value of
the target variable for a given set of feature variables. Similar to mixture modeling in
clustering (cf. Sect. 6.5 in Chap. 6), it is assumed that the data points within a class are
generated from a specific probability distribution such as the Bernoulli distribution or
the multinomial distribution. A naive Bayes assumption of class-conditioned feature
independence is often (but not always) used to simplify the modeling.

2. Logistic regression: The target variable is assumed to be drawn from a Bernoulli
distribution whose mean is defined by a parameterized logit function on the feature
variables. Thus, the probability distribution of the class variable is a parameterized
function of the feature variables. This is in contrast to the Bayes model that assumes
a specific generative model of the feature distribution of each class.

The first type of classifier is referred to as a generative classifier, whereas the second is
referred to as a discriminative classifier. In the following, both classifiers will be studied in
detail.

10.5.1 Naive Bayes Classifier

The Bayes classifier is based on the Bayes theorem for conditional probabilities. This the-
orem quantifies the conditional probability of a random variable (class variable), given
known observations about the value of another set of random variables (feature variables).
The Bayes theorem is used widely in probability and statistics. To understand the Bayes
theorem, consider the following example, based on Table 10.1:

Example 10.5.1 A charitable organization solicits donations from individuals in the pop-
ulation of which 6/11 have age greater than 50. The company has a success rate of 6/11 in
soliciting donations, and among the individuals who donate, the probability that the age is
greater than 50 is 5/6. Given an individual with age greater than 50, what is the probability
that he or she will donate?

Consider the case where the event E corresponds to (Age > 50), and eventD corresponds
to an individual being a donor. The goal is to determine the posterior probability P (D|E).
This quantity is referred to as the “posterior” probability because it is conditioned on
the observation of the event E that the individual has age greater than 50. The “prior”
probability P (D), before observing the age, is 6/11. Clearly, knowledge of an individual’s
age influences posterior probabilities because of the obvious correlations between age and
donor behavior.

Bayes theorem is useful for estimating P (D|E) when it is hard to estimate P (D|E)
directly from the training data, but other conditional and prior probabilities such as
P (E|D), P (D), and P (E) can be estimated more easily. Specifically, Bayes theorem states
the following:

P (D|E) =
P (E|D)P (D)

P (E)
. (10.16)
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Each of the expressions on the right-hand side is already known. The value of P (E) is 6/11,
and the value of P (E|D) is 5/6. Furthermore, the prior probability P (D) before knowing
the age is 6/11. Consequently, the posterior probability may be estimated as follows:

P (D|E) =
(5/6)(6/11)

6/11
= 5/6. (10.17)

Therefore, if we had 1-dimensional training data containing only the Age, along with the
class variable, the probabilities could be estimated using this approach. Table 10.1 contains
an example with training instances satisfying the aforementioned conditions. It is also easy
to verify from Table 10.1 that the fraction of individuals above age 50 who are donors is
5/6, which is in agreement with Bayes theorem. In this particular case, the Bayes theorem
is not really essential because the classes can be predicted directly from a single attribute of
the training data. A question arises, as to why the indirect route of using the Bayes theorem
is useful, if the posterior probability P (D|E) could be estimated directly from the training
data (Table 10.1) in the first place. The reason is that the conditional event E usually
corresponds to a combination of constraints on d different feature variables, rather than a
single one. This makes the direct estimation of P (D|E) much more difficult. For example, the
probability P (Donor|Age > 50, Salary > 50, 000) is harder to robustly estimate from the
training data because there are fewer instances in Table 10.1 that satisfy both the conditions
on age and salary. This problem increases with increasing dimensionality. In general, for a d-
dimensional test instance, with d conditions, it may be the case that not even a single tuple
in the training data satisfies all these conditions. Bayes rule provides a way of expressing
P (Donor|Age > 50, Salary > 50, 000) in terms of P (Age > 50, Salary > 50, 000|Donor).
The latter is much easier to estimate with the use of a product-wise approximation known
as the naive Bayes approximation, whereas the former is not.

For ease in discussion, it will be assumed that all feature variables are categorical. The
numeric case is discussed later. Let C be the random variable representing the class variable
of an unseen test instance with d-dimensional feature values X = (a1 . . . ad). The goal is to
estimate P (C = c|X = (a1 . . . ad)). Let the random variables for the individual dimensions of
X be denoted by X = (x1 . . . xd). Then, it is desired to estimate the conditional probability
P (C = c|x1 = a1, . . . xd = ad). This is difficult to estimate directly from the training
data because the training data may not contain even a single record with attribute values
(a1 . . . ad). Then, by using Bayes theorem, the following equivalence can be inferred:

P (C = c|x1 = a1, . . . xd = ad) =
P (C = c)P (x1 = a1, . . . xd = ad|C = c)

P (x1 = a1, . . . xd = ad)
(10.18)

∝ P (C = c)P (x1 = a1, . . . xd = ad|C = c). (10.19)

The second relationship above is based on the fact that the term P (x1 = a1, . . . xd =
ad) in the denominator of the first relationship is independent of the class. Therefore, it
suffices to only compute the numerator to determine the class with the maximum conditional
probability. The value of P (C = c) is the prior probability of the class identifier c and
can be estimated as the fraction of the training data points belonging to class c. The key
usefulness of the Bayes rule is that the terms on the right-hand side can now be effectively
approximated from the training data with the use of a naive Bayes approximation. The
naive Bayes approximation assumes that the values on the different attributes x1 . . . xd are
independent of one another conditional on the class. When two random events A and B are
independent of one another conditional on a third event F , it follows that P (A ∩ B|F ) =
P (A|F )P (B|F ). In the case of the naive Bayes approximation, it is assumed that the feature
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values are independent of one another conditional on a fixed value of the class variable. This
implies the following for the conditional term on the right-hand side of Eq. 10.19.

P (x1 = a1, . . . xd = ad|C = c) =
d∏

j=1

P (xj = aj |C = c) (10.20)

Therefore, by substituting Eq. 10.20 in Eq. 10.19, the Bayes probability can be estimated
within a constant of proportionality as follows:

P (C = c|x1 = a1, . . . xd = ad) ∝ P (C = c)
d∏

j=1

P (xj = aj |C = c). (10.21)

Note that each term P (xj = aj |C = c) is much easier to estimate from the training data
than P (x1 = a1, . . . xd = ad|C = c) because enough training examples will exist in the
former case to provide a robust estimate. Specifically, the maximum likelihood estimate for
the value of P (xj = aj |C = c) is the fraction of training examples taking on value aj ,
conditional on the fact, that they belong to class c. In other words, if q(aj , c) is the number
of training examples corresponding to feature variable xj = aj and class c, and r(c) is
the number of training examples belonging to class c, then the estimation is performed as
follows:

P (xj = aj |C = c) =
q(aj , c)
r(c)

. (10.22)

In some cases, enough training examples may still not be available to estimate these values
robustly. For example, consider a rare class c with a single training example satisfying
r(c) = 1, and q(aj , c) = 0. In such a case, the conditional probability is estimated to 0.
Because of the productwise form of the Bayes expression, the entire probability will be
estimated to 0. Clearly, the use of a small number of training examples belonging to the
rare class cannot provide robust estimates. To avoid this kind of overfitting, Laplacian
smoothing is used. A small value of α is added to the numerator, and a value of α ·mj is
added to the denominator, where mj is the number of distinct values of the jth attribute:

P (xj = aj |C = c) =
q(aj , c) + α

r(c) + α ·mj
. (10.23)

Here, α is the Laplacian smoothing parameter. For the case where r(c) = 0, this has the
effect of estimating the probability to an unbiased value of 1/mj for all mj distinct attribute
values. This is a reasonable estimate in the absence of any training data about class c.
Thus, the training phase only requires the estimation of these conditional probabilities
P (xj = aj |C = c) of each class–attribute–value combination, and the estimation of the
prior probabilities P (C = c) of each class.

This model is referred to as the binary or Bernoulli model for Bayes classification when
it is applied to categorical data with only two outcomes of each feature attribute. For
example, in text data, the two outcomes could correspond to the presence or absence of
a word. In cases where more than two outcomes are possible for a feature variable, the
model is referred to as the generalized Bernoulli model. The implicit generative assumption
of this model is similar to that of mixture modeling algorithms in clustering (cf. Sect. 6.5 of
Chap. 6). The features within each class (mixture component) are independently generated
from a distribution whose probabilities are the productwise approximations of Bernoulli
distributions. The estimation of model parameters in the training phase is analogous to
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the M-step in expectation–maximization (EM) clustering algorithms. Note that, unlike EM
clustering algorithms, the labels on only the training data are used to compute the maximum
likelihood estimates of parameters in the training phase. Furthermore, the E-step (or the
iterative approach) is not required because the (deterministic) assignment “probabilities” of
labeled data are already known. In Sect. 13.5.2.1 of Chap. 13, a more sophisticated model,
referred to as the multinomial model, will be discussed. This model can address sparse
frequencies associated with attributes, as in text data. In general, the Bayes model can
assume any parametric form of the conditional feature distribution P (x1 = a1, . . . xd =
ad|C = c) of each class (mixture component), such as a Bernoulli model, a multinomial
model, or even a Gaussian model for numeric data. The parameters of the distribution of
each class are estimated in a data-driven manner. The approach discussed in this section,
therefore, represents only a single instantiation from a wider array of possibilities.

The aforementioned description is based on categorical data. It can also be generalized
to numeric data sets by using the process of discretization. Each discretized range becomes
one of the possible categorical values of an attribute. Such an approach can, however, be
sensitive to the granularity of the discretization. A second approach is to assume a specific
form of the probability distribution of each mixture component (class), such as a Gaussian
distribution. The mean and variance parameters of the Gaussian distribution of each class
are estimated in a data-driven manner, just as the class conditioned feature probabilities are
estimated in the Bernoulli model. Specifically, the mean and variance of each Gaussian can
be estimated directly as the mean and variance of the training data for the corresponding
class. This is similar to the M-step in EM clustering algorithms with Gaussian mixtures.
The conditional class probabilities in Eq. 10.21 for a test instance are replaced with the
class-specific Gaussian densities of the test instance.

10.5.1.1 The Ranking Model for Classification

The aforementioned algorithms predict the labels of individual test instances. In some sce-
narios, a set of test instances is provided to the learner, and it is desired to rank these
test instances by their propensity to belong to a particularly important class c. This is a
common scenario in rare-class learning, which will be discussed in Sect. 11.3 of Chap. 11.

As discussed in Eq. 10.21, the probability of a test instance (a1 . . . ad) belonging to a
particular class can be estimated within a constant of proportionality as follows:

P (C = c|x1 = a1, . . . xd = ad) ∝ P (C = c)
d∏

j=1

P (xj = aj |C = c). (10.24)

The constant of proportionality is irrelevant while comparing the scores across different
classes but is not irrelevant while comparing the scores across different test instances. This
is because the constant of proportionality is the inverse of the generative probability of
the specific test instance. An easy way to estimate the proportionality constant is to use
normalization so that the sum of probabilities across different classes is 1. Therefore, if
the class label c is assumed to be an integer drawn from the range {1 . . . k} for a k-class
problem, then the Bayes probability can be estimated as follows:

P (C = c|x1 = a1, . . . xd = ad) =
P (C = c)

∏d
j=1 P (xj = aj |C = c)∑k

c=1 P (C = c)
∏d

j=1 P (xj = aj |C = c)
. (10.25)

These normalized values can then be used to rank different test instances. It should be
pointed out that most classification algorithms return a numerical score for each class,
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and therefore an analogous normalization can be performed for virtually any classification
algorithm. However, in the Bayes method, it is more natural to intuitively interpret the
normalized values as probabilities.

10.5.1.2 Discussion of the Naive Assumption

The Bayes model is referred to as “naive” because of the assumption of conditional inde-
pendence. This assumption is obviously not true in practice because the features in real
data sets are almost always correlated even when they are conditioned on a specific class.
Nevertheless, in spite of this approximation, the naive Bayes classifier seems to perform
quite well in practice in many domains. Although it is possible to implement the Bayes
model using more general multivariate estimation methods, such methods can be computa-
tionally more expensive. Furthermore, the estimation of multivariate probabilities becomes
inaccurate with increasing dimensionality, especially with limited training data. Therefore,
significant practical accuracy is often not gained with the use of theoretically more accu-
rate assumptions. The bibliographic notes contain pointers to theoretical results on the
effectiveness of the naive assumption.

10.5.2 Logistic Regression

While the Bayes classifier assumes a specific form of the feature probability distribution for
each class, logistic regression directly models the class-membership probabilities in terms
of the feature variables with a discriminative function. Thus, the nature of the modeling
assumption is different in the two cases. Both are, however, probabilistic classifiers because
they use a specific modeling assumption to map the feature variables to a class-membership
probability. In both cases, the parameters of the underlying probabilistic model need to be
estimated in a data-driven manner.

In the simplest form of logistic regression, it is assumed that the class variable is binary,
and is drawn from {−1,+1}, although it is also possible to model nonbinary class variables.
Let Θ = (θ0, θ1 . . . θd) be a vector of d + 1 different parameters. The ith parameter θi is a
coefficient related to the ith dimension in the underlying data, and θ0 is an offset parameter.
Then, for a record X = (x1 . . . xd), the probability that the class variable C takes on the
values of +1 or −1, is modeled with the use of a logistic function.

P (C = +1|X) =
1

1 + e−(θ0+
∑d

i=1 θixi)
(10.26)

P (C = −1|X) =
1

1 + e(θ0+
∑d

i=1 θixi)
(10.27)

It is easy to verify that the sum of the two aforementioned probability values is 1. Logistic
regression can be viewed as either a probabilistic classifier or a linear classifier. In linear
classifiers, such as Fisher’s discriminant, a linear hyperplane is used to separate the two
classes. Other linear classifiers such as SVMs and neural networks will be discussed in
Sects. 10.6 and 10.7 of this chapter. In logistic regression, the parameters Θ = (θ0 . . . θd)
can be viewed as the coefficients of a separating hyperplane θ0 +

∑d
i=1 θixi = 0 between

the two classes. The term θi is the linear coefficient of dimension i, and the term θ0 is the
constant term. The value of θ0+

∑d
i=1 θixi will be either positive or negative, depending on

the side of the separating hyperplane on which X is located. A positive value is predictive
of the class +1, whereas a negative value is predictive of the class −1. In many other linear
classifiers, the sign of this expression yields the class label of X from {−1,+1}. Logistic
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Figure 10.6: Illustration of logistic regression in terms of linear separators

regression achieves the same result in the form of probabilities defined by the aforementioned
discriminative function.

The term θ0 +
∑d

i=1 θixi, within the exponent of the logistic function is proportional to
the distance of the data point from the separating hyperplane. When the data point lies
exactly on this hyperplane, both classes are assigned the probability of 0.5 according to
the logistic function. Positive values of the distance will assign probability values greater
than 0.5 to the positive class. Negative values of the distance will assign (symmetrically
equal) probability values greater than 0.5 to the negative class. This scenario is illustrated
in Fig. 10.6. Therefore, the logistic function neatly exponentiates the distances, shown in
Fig. 10.6, to convert them to intuitively interpretable probabilities in (0, 1). The setup of
logistic regression is similar to classical least-squares linear regression, with the difference
that the logit function is used to estimate probabilities of class membership instead of con-
structing a squared error objective. Consequently, instead of the least-squares optimization
in linear regression, a maximum likelihood optimization model is used for logistic regression.

10.5.2.1 Training a Logistic Regression Classifier

The maximum likelihood approach is used to estimate the best fitting parameters of the
logistic regression model. Let D+ and D− be the segments of the training data belonging
to the positive and negative classes, respectively. Let the kth data point be denoted by
Xk = (x1

k . . . x
d
k). Then, the likelihood function L(Θ) for the entire data set is defined as

follows:
L(Θ) =

∏
Xk∈D+

1

1 + e−(θ0+
∑d

i=1 θixi
k)

∏
Xk∈D−

1

1 + e(θ0+
∑d

i=1 θixi
k)
. (10.28)

This likelihood function is the product of the probabilities of all the training examples
taking on their assigned labels according to the logistic model. The goal is to maximize
this function to determine the optimal value of the parameter vector Θ. For numerical
convenience, the log likelihood is used to yield the following:

LL(Θ) = log(L(Θ)) = −
∑

Xk∈D+

log(1 + e−(θ0+
∑d

i=1 θix
i
k))−

∑
Xk∈D−

log(1 + e(θ0+
∑d

i=1 θix
i
k)).

(10.29)
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There is no closed-form solution for optimizing the aforementioned expression with respect
to the vector Θ. Therefore, a natural approach is to use a gradient ascent method to deter-
mine the optimal value of the parameter vector Θ iteratively. The gradient vector is obtained
by differentiating the log-likelihood function with respect to each of the parameters:

∇LL(Θ) =
(
∂LL(Θ
∂θ0

. . .
∂LL(Θ
∂θd

)
. (10.30)

It is instructive to examine the ith component4 of the aforementioned gradient, for i > 0. By
computing the partial derivative of both sides of Eq. 10.29 with respect to θi, the following
can be obtained:

∂LL(Θ)
∂θi

=
∑

Xk∈D+

xi
k

1 + e(θ0+
∑d

i=1 θixi)
−

∑
Xk∈D−

xi
k

1 + e−(θ0+
∑d

i=1 θixi)
(10.31)

=
∑

Xk∈D+

P (Xk ∈ D−)xi
k −

∑
Xk∈D−

P (Xk ∈ D+)xi
k (10.32)

=
∑

Xk∈D+

P (Mistake on Xk)xi
k −

∑
Xk∈D−

P (Mistake on Xk)xi
k. (10.33)

It is interesting to note that the terms P (Xk ∈ D−) and P (Xk ∈ D+) represent the
probability of an incorrect prediction of Xk in the positive and negative classes, respectively.
Thus, the mistakes of the current model are used to identify the steepest ascent directions.
This approach is generally true of many linear models, such as neural networks, which are
also referred to as mistake-driven methods. In addition, the multiplicative factor xi

k impacts
the magnitude of the ith component of the gradient direction contributed by Xk. Therefore,
the update condition for θi is as follows:

θi ← θi + α

⎛
⎝ ∑

Xk∈D+

P (Xk ∈ D−)xi
k −

∑
Xk∈D−

P (Xk ∈ D+)xi
k

⎞
⎠ . (10.34)

The value of α is the step size, which can be determined by using binary search to maximize
the improvement in the objective function value. The aforementioned equation uses a batch
ascent method, wherein all the training data points contribute to the gradient in a single
update step. In practice, it is possible to cycle through the data points one by one for the
update process. It can be shown that the likelihood function is concave. Therefore, a global
optimum will be found by the gradient ascent method. A number of regularization methods
are also used to reduce overfitting. A typical example of a regularization term, which is added
to the log-likelihood function LL(Θ) is −λ

∑d
i=1 θ

2
i /2, where λ is the balancing parameter.

The only difference to the gradient update is that the term −λθi needs to be added to the
ith gradient component for i ≥ 1.

10.5.2.2 Relationship with Other Linear Models

Although the logistic regression method is a probabilistic method, it is also a special case of
a broader class of generalized linear models (cf. Sect. 11.5.3 of Chap. 11). There are many
ways of formulating a linear model. For example, instead of using a logistic function to set

4For the case where i = 0, the value of xi
k is replaced by 1.
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up a likelihood criterion, one might directly optimize the squared error of the prediction.
In other words, if the class label for Xk is yk ∈ {−1,+1}, one might simply attempt to
optimize the squared error

∑
Xk∈D(yk−sign(θ0+

∑d
i=1 θix

k
i ))

2 over all test instances. Here,
the function “sign” evaluates to +1 or −1, depending on whether its argument is positive
or negative. As will be evident in Sect. 10.7, such a model is (approximately) used by neural
networks. Similarly, Fisher’s linear discriminant, which was discussed at the beginning of
this chapter, is also a linear least-squares model (cf. Sect. 11.5.1.1 of Chap. 11) but with
a different coding of the class variable. In the next section, a linear model that uses the
maximum margin principle to separate the two classes, will be discussed.

10.6 Support Vector Machines

Support vector machines (SVMs) are naturally defined for binary classification of numeric
data. The binary-class problem can be generalized to the multiclass case by using a vari-
ety of tricks discussed in Sect. 11.2 of Chap. 11. Categorical feature variables can also
be addressed by transforming categorical attributes to binary data with the binarization
approach discussed in Chap. 2.

It is assumed that the class labels are drawn from {−1, 1}. As with all linear models,
SVMs use separating hyperplanes as the decision boundary between the two classes. In
the case of SVMs, the optimization problem of determining these hyperplanes is set up
with the notion of margin. Intuitively, a maximum margin hyperplane is one that cleanly
separates the two classes, and for which a large region (or margin) exists on each side of the
boundary with no training data points in it. To understand this concept, the very special
case where the data is linearly separable will be discussed first. In linearly separable data, it
is possible to construct a linear hyperplane which cleanly separates data points belonging to
the two classes. Of course, this special case is relatively unusual because real data is rarely
fully separable, and at least a few data points, such as mislabeled data points or outliers,
will violate linear separability. Nevertheless, the linearly separable formulation is crucial
in understanding the important principle of maximum margin. After discussing the linear
separable case, the modifications to the formulation required to enable more general (and
realistic) scenarios will be addressed.

10.6.1 Support Vector Machines for Linearly Separable Data

This section will introduce the use of the maximum margin principle in linearly separable
data. When the data is linearly separable, there are an infinite number of possible ways
of constructing a linear separating hyperplane between the classes. Two examples of such
hyperplanes are illustrated in Fig. 10.7a as hyperplane 1 and hyperplane 2. Which of these
hyperplanes is better? To understand this, consider the test instance (marked by a square),
which is very obviously much closer to class A than class B. The hyperplane 1 will correctly
classify it to class A, whereas the hyperplane 2 will incorrectly classify it to class B.

The reason for the varying performance of the two classifiers is that the test instance is
placed in a noisy and uncertain boundary region between the two classes, which is not easily
generalizable from the available training data. In other words, there are few training data
points in this uncertain region that are quite like the test instance. In such cases, a separating
hyperplane like hyperplane 1, whose minimum perpendicular distance to training points
from both classes is as large as possible, is the most robust one for correct classification.
This distance can be quantified using the margin of the hyperplane.
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Figure 10.7: Hard and soft SVMs

Consider a hyperplane that cleanly separates two linearly separable classes. The margin
of the hyperplane is defined as the sum of its distances to the closest training points belong-
ing to each of the two classes on the opposite side of the hyperplane. A further assumption
is that the distance of the separating hyperplane to its closest training point of either class
is the same. With respect to the separating hyperplane, it is possible to construct parallel
hyperplanes that touch the training data of opposite classes on either side, and have no
data point between them. The training data points on these hyperplanes are referred to
as the support vectors, and the distance between the two hyperplanes is the margin. The
separating hyperplane, or decision boundary, is precisely in the middle of these two hyper-
planes in order to achieve the most accurate classification. The margins for hyperplane 1
and hyperplane 2 are illustrated in Fig. 10.7a by dashed lines. It is evident that the margin
for hyperplane 1 is larger than that for hyperplane 2. Therefore, the former hyperplane
provides better generalization power for unseen test instances in the “difficult” uncertain
region separating the two classes where classification errors are most likely. This is also con-
sistent with our earlier example-based observation about the more accurate classification
with hyperplane 1.

How do we determine the maximum margin hyperplane? The way to do this is to set up a
nonlinear programming optimization formulation that maximizes the margin by expressing
it as a function of the coefficients of the separating hyperplane. The optimal coefficients can
be determined by solving this optimization problem. Let the n data points in the training set
D be denoted by (X1, y1) . . . (Xn, yn), where Xi is a d-dimensional row vector corresponding
to the ith data point, and yi ∈ {−1,+1} is the binary class variable of the ith data point.
Then, the separating hyperplane is of the following form:

W ·X + b = 0. (10.35)

Here, W = (w1 . . . wd) is the d-dimensional row vector representing the normal direction
to the hyperplane, and b is a scalar, also known as the bias. The vector W regulates the
orientation of the hyperplane and the bias b regulates the distance of the hyperplane from
the origin. The (d + 1) coefficients corresponding to W and b need to be learned from the
training data to maximize the margin of separation between the two classes. Because it
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is assumed that the classes are linearly separable, such a hyperplane can also be assumed
to exist. All data points Xi with yi = +1 will lie on one side of the hyperplane satisfying
W ·Xi+ b ≥ 0. Similarly, all points with yi = −1 will lie on the other side of the hyperplane
satisfying W ·Xi + b ≤ 0.

W ·Xi + b ≥ 0 ∀i : yi = +1 (10.36)
W ·Xi + b ≤ 0 ∀i : yi = −1 (10.37)

These constraints do not yet incorporate the margin requirements on the data points. A
stronger set of constraints are defined using these margin requirements. It may be assumed
that the separating hyperplane W · X + b = 0 is located in the center of the two margin-
defining hyperplanes. Therefore, the two symmetric hyperplanes touching the support vec-
tors can be expressed by introducing another parameter c that regulates the distance
between them.

W ·X + b = +c (10.38)
W ·X + b = −c (10.39)

It is possible to assume, without loss of generality, that the variables W and b are appropri-
ately scaled, so that the value of c can be set to 1. Therefore, the two separating hyperplanes
can be expressed in the following form:

W ·X + b = +1 (10.40)
W ·X + b = −1. (10.41)

These constraints are referred to as margin constraints. The two hyperplanes segment the
data space into three regions. It is assumed that no training data points lie in the uncertain
decision boundary region between these two hyperplanes, and all training data points for
each class are mapped to one of the two remaining (extreme) regions. This can be expressed
as pointwise constraints on the training data points as follows:

W ·Xi + b ≥ +1 ∀i : yi = +1 (10.42)

W ·Xi + b ≤ −1 ∀i : yi = −1. (10.43)

Note that the constraints for both the positive and negative classes can be written in the
following succinct and algebraically convenient, but rather cryptic, form:

yi(W ·Xi + b) ≥ +1 ∀i. (10.44)

The distance between the two hyperplanes for the positive and negative instances is also
referred to as the margin. As discussed earlier, the goal is to maximize this margin. What
is the distance (or margin) between these two parallel hyperplanes? One can use linear
algebra to show that the distance between two parallel hyperplanes is the normalized
difference between their constant terms, where the normalization factor is the L2-norm

||W || =
√∑d

i=1 w
2
i of the coefficients. Because the difference between the constant terms

of the two aforementioned hyperplanes is 2, it follows that the distance between them is
2/||W ||. This is the margin that needs to be maximized with respect to the aforementioned
constraints. This form of the objective function is inconvenient because it incorporates a
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square root in the denominator of the objective function. However, maximizing 2/||W || is
the same as minimizing ||W ||2/2. This is a convex quadratic programming problem, because
the quadratic objective function ||W ||2/2 needs to be minimized subject to a set of linear
constraints (Eqs. 10.42–10.43) on the training points. Note that each training data point
leads to a constraint, which tends to make the optimization problem rather large, and
explains the high computational complexity of SVMs.

Such constrained nonlinear programming problems are solved using a method known as
Lagrangian relaxation. The broad idea is to associate a nonnegative n-dimensional set of
Lagrangian multipliers λ = (λ1 . . . λn) ≥ 0 for the different constraints. The multiplier λi

corresponds to the margin constraint of the ith training data point. The constraints are then
relaxed, and the objective function is augmented by incorporating a Lagrangian penalty for
constraint violation:

LP =
||W ||2

2
−

n∑
i=1

λi

[
yi(W ·Xi + b)− 1

]
. (10.45)

For fixed nonnegative values of λi, margin constraint violations increase Lp. Therefore, the
penalty term pushes the optimized values of W and b towards constraint nonviolation for
minimization of LP with respect to W and b. Values of W and b that satisfy the margin
constraints will always result in a nonpositive penalty. Therefore, for any fixed nonnegative
value of λ, the minimum value of LP will always be at most equal to that of the original
optimal objective function value ||W ∗||2/2 because of the impact of the non-positive penalty
term for any feasible (W ∗, b∗).

Therefore, if LP is minimized with respect to W and b for any particular λ, and then
maximized with respect to nonnegative Lagrangian multipliers λ, the resulting dual solution
L∗
D will be a lower bound on the optimal objective function O∗ = ||W ∗||2/2 of the SVM

formulation. Mathematically, this weak duality condition can be expressed as follows:

O∗ ≥ L∗
D = max λ≥0 min W,bLP . (10.46)

Optimization formulations such as SVM are special because the objective function is convex,
and the constraints are linear. Such formulations satisfy a property known as strong duality.
According to this property, the minimax relationship of Eq. 10.46 yields an optimal and
feasible solution to the original problem (i.e., O∗ = L∗

D) in which the Lagrangian penalty
term has zero contribution. Such a solution (W ∗, b∗, λ∗) is referred to as the saddle point
of the Lagrangian formulation. Note that zero Lagrangian penalty is achieved by a feasible
solution only when each training data point Xi satisfies λi

[
yi(W ·Xi + b)− 1

]
= 0. These

conditions are equivalent to the Kuhn–Tucker optimality conditions, and they imply that
data points Xi with λi > 0 are support vectors. The Lagrangian formulation is solved using
the following steps:

1. The Lagrangian objective LP can be expressed more conveniently as a pure maxi-
mization problem by eliminating the minimization part from the awkward minimax
formulation. This is achieved by eliminating the minimization variables W and b with
gradient-based optimization conditions on these variables. By setting the gradient of
LP with respect to W to 0, we obtain the following:

∇LP = ∇||W ||2
2

−∇
n∑

i=1

λi

[
yi(W ·Xi + b)− 1

]
= 0 (10.47)

W −
n∑

i=1

λiyiXi = 0. (10.48)
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Therefore, one can now derive an expression for W in terms of the Lagrangian multi-
pliers and the training data points:

W =
n∑

i=1

λiyiXi. (10.49)

Furthermore, by setting the partial derivative of LP with respect to b to 0, we obtain∑n
i=1 λiyi = 0.

2. The optimization condition
∑n

i=1 λiyi = 0 can be used to eliminate the term
−b

∑n
i=1 λiyi from LP . The expression W =

∑n
i=1 λiyiXi from Eq. 10.49 can then

be substituted in LP to create a dual problem LD in terms of only the maximization
variables λ. Specifically, the maximization objective function LD for the Lagrangian
dual is as follows:

LD =
n∑

i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjXi ·Xj . (10.50)

The dual problem maximizes LD subject to the constraints λi ≥ 0 and
∑n

i=1 λiyi = 0.
Note that LD is expressed only in terms of λi, the class labels, and the pairwise dot
products Xi ·Xj between training data points. Therefore, solving for the Lagrangian
multipliers requires knowledge of only the class variables and dot products between
training instances but it does not require direct knowledge of the feature values Xi.
The dot products between training data points can be viewed as a kind of similar-
ity between the points, which can easily be defined for data types beyond numeric
domains. This observation is important for generalizing linear SVMs to nonlinear
decision boundaries and arbitrary data types with the kernel trick.

3. The value of b can be derived from the constraints in the original SVM formulation,
for which the Lagrangian multipliers λr are strictly positive. For these training points,
the margin constraint yr(W ·Xr+ b) = +1 is satisfied exactly according to the Kuhn–
Tucker conditions. The value of b can be derived from any such training point (Xr, yr)
as follows:

yr
[
W ·Xr + b

]
= +1 ∀r : λr > 0 (10.51)

yr

[
(

n∑
i=1

λiyiXi ·Xr) + b

]
= +1 ∀r : λr > 0. (10.52)

The second relationship is derived by substituting the expression for W in terms of the
Lagrangian multipliers according to Eq. 10.49. Note that this relationship is expressed
only in terms of Lagrangian multipliers, class labels, and dot products between training
instances. The value of b can be solved from this equation. To reduce numerical error,
the value of b may be averaged over all the support vectors with λr > 0.

4. For a test instance Z, its class label F (Z) is defined by the decision boundary obtained
by substituting for W in terms of the Lagrangian multipliers (Eq. 10.49):

F (Z) = sign{W · Z + b} = sign{(
n∑

i=1

λiyiXi · Z) + b}. (10.53)
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It is interesting to note that F (Z) can be fully expressed in terms of the dot product
between training instances and test instances, class labels, Lagrangian multipliers, and
bias b. Because the Lagrangian multipliers λi and b can also be expressed in terms of
the dot products between training instances, it follows that the classification can be
fully performed using knowledge of only the dot product between different instances
(training and test), without knowing the exact feature values of either the training or
the test instances.

The observations about dot products are crucial in generalizing SVM methods to nonlinear
decision boundaries and arbitrary data types with the use of a technique known as the
kernel trick. This technique simply substitutes dot products with kernel similarities (cf.
Sect. 10.6.4).

It is noteworthy from the derivation of W (see Eq. 10.49) and the aforementioned deriva-
tion of b, that only training data points that are support vectors (with λr > 0) are used to
define the solution W and b in SVM optimization. As discussed in Chap. 11, this observation
is leveraged by scalable SVM classifiers, such as SVMLight. Such classifiers shrink the size
of the problem by discarding irrelevant training data points that are easily identified to be
far away from the separating hyperplanes.

10.6.1.1 Solving the Lagrangian Dual

The Lagrangian dual LD may be optimized by using the gradient ascent technique in terms
of the n-dimensional parameter vector λ.

∂LD

∂λi
= 1− yi

n∑
j=1

yjλjXi ·Xj (10.54)

Therefore, as in logistic regression, the corresponding gradient-based update equation is as
follows:

(λ1 . . . λn) ← (λ1 . . . λn) + α

(
∂LD

∂λ1
. . .

∂LD

∂λn

)
. (10.55)

The step size α may be chosen to maximize the improvement in objective function. The
initial solution can be chosen to be the vector of zeros, which is also a feasible solution for λ.

One problem with this update is that the constraints λi ≥ 0 and
∑n

i=1 λiyi = 0 may be
violated after an update. Therefore, the gradient vector is projected along the hyperplane∑n

i=1 λiyi = 0 before the update to create a modified gradient vector. Note that the projec-
tion of the gradient ∇LD along the normal to this hyperplane is simply H = (y · ∇LD) y,
where y is the unit vector 1√

n
(y1 . . . yn). This component is subtracted from ∇LD to create

a modified gradient vector G = ∇LD − H. Because of the projection, updating along the
modified gradient vector G will not violate the constraint

∑n
i=1 λiyi = 0. In addition, any

negative values of λi after an update are reset to 0.
Note that the constraint

∑n
i=1 λiyi = 0 is derived by setting the gradient of LP with

respect to b to 0. In some alternative formulations of SVMs, the bias vector b can be included
within W by adding a synthetic dimension to the data with a constant value of 1. In such
cases, the gradient vector update is simplified to Eq. 10.55 because one no longer needs to
worry about the constraint

∑n
i=1 λiyi = 0. This alternative formulation of SVMs is discussed

in Chap. 13.
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10.6.2 Support Vector Machines with Soft Margin
for Nonseparable Data

The previous section discussed the scenario where the data points of the two classes are
linearly separable. However, perfect linear separability is a rather contrived scenario, and
real data sets usually will not satisfy this property. An example of such a data set is illus-
trated in Fig. 10.7b, where no linear separator may be found. Many real data sets may,
however, be approximately separable, where most of the data points lie on correct sides of
well-chosen separating hyperplanes. In this case, the notion of margin becomes a softer one
because training data points are allowed to violate the margin constraints at the expense of
a penalty. The two margin hyperplanes separate out “most” of the training data points but
not all of them. An example is illustrated in Fig. 10.7b.

The level of violation of each margin constraint by training data point Xi is denoted
by a slack variable ξi ≥ 0. Therefore, the new set of soft constraints on the separating
hyperplanes may be expressed as follows:

W ·Xi + b ≥ +1− ξi ∀i : yi = +1

W ·Xi + b ≤ −1 + ξi ∀i : yi = −1
ξi ≥ 0 ∀i.

These slack variables ξi may be interpreted as the distances of the training data points from
the separating hyperplanes, as illustrated in Fig. 10.7b, when they lie on the “wrong” side
of the separating hyperplanes. The values of the slack variables are 0 when they lie on the
correct side of the separating hyperplanes. It is not desirable for too many training data
points to have positive values of ξi, and therefore such violations are penalized by C · ξri ,
where C and r are user-defined parameters regulating the level of softness in the model.
Small values of C would result in relaxed margins, whereas large values of C would minimize
training data errors and result in narrow margins. Setting C to be sufficiently large would
disallow any training data error in separable classes, which is the same as setting all slack
variables to 0 and defaulting to the hard version of the problem. A popular choice of r is
1, which is also referred to as hinge loss. Therefore, the objective function for soft-margin
SVMs, with hinge loss, is defined as follows:

O =
||W ||2

2
+ C

n∑
i=1

ξi. (10.56)

As before, this is a convex quadratic optimization problem that can be solved using
Lagrangian methods. A similar approach is used to set up the Lagrangian relaxation of
the problem with penalty terms and additional multipliers βi ≥ 0 for the slack constraints
ξi ≥ 0:

LP =
||W ||2

2
+ C

n∑
i=1

ξi −
n∑

i=1

λi

[
yi(W ·Xi + b)− 1 + ξi

]
−

n∑
i=1

βiξi. (10.57)

A similar approach to the hard SVM case can be used to eliminate the minimization variables
W , ξi, and b from the optimization formulation and create a purely maximization dual
formulation. This is achieved by setting the gradient of LP with respect to these variables
to 0. By setting the gradients of LP with respect to W and b to 0, it can be respectively
shown that the value of W is identical to the hard-margin case (Eq. 10.49), and the same
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multiplier constraint
∑n

i=1 λiyi = 0 is satisfied. This is because the additional slack terms in
LP involving ξi do not affect the respective gradients with respect to W and b. Furthermore,
it can be shown that the objective function LD of the Lagrangian dual in the soft-margin
case is identical to that of the hard-margin case, according to Eq. 10.50, because the linear
terms involving each ξi evaluate5 to 0. The only change to the dual optimization problem
is that the nonnegative Lagrangian multipliers satisfy additional constraints of the form
C − λi = βi ≥ 0. This constraint is derived by setting the partial derivative of LP with
respect to ξi to 0. One way of viewing this additional constraint λi ≤ C is that the influence
of any training data pointXi on the weight vectorW =

∑n
i=1 λiyiXi is capped by C because

of the softness of the margin. The dual problem in soft SVMs maximizes LD (Eq. 10.50)
subject to the constraints 0 ≤ λi ≤ C and

∑n
i=1 λiyi = 0.

The Kuhn–Tucker optimality conditions for the slack nonnegativity constraints are
βiξi = 0. Because we have already derived βi = C − λi, we obtain (C − λi)ξi = 0. In
other words, training points Xi with λi < C correspond to zero slack ξi and they might
either lie on the margin or on the correct side of the margin. However, in this case, the
support vectors are defined as data points that satisfy the soft SVM constraints exactly
and some of them might have nonzero slack. Such points might lie on the margin, between
the margin, or on the wrong side of the decision boundary. Points that satisfy λi > 0 are
always support vectors. The support vectors that lie on the margin will therefore satisfy
0 < λi < C. These points are very useful in solving for b. Consider any such support vector
Xr with zero slack, which satisfies 0 < λr < C. The value of b may be obtained as before:

yr

[
(

n∑
i=1

λiyiXi ·Xr) + b

]
= +1. (10.58)

Note that this expression is the same as for the case of hard SVMs, except that the relevant
training points are identified by using the condition 0 < λr < C. The gradient-ascent
update is also identical to the separable case (cf. Sect. 10.6.1.1), except that any multiplier
λi exceeding C because of an update needs to be reset to C. The classification of a test
instance also uses Eq. 10.53 in terms of Lagrangian multipliers because the relationship
between the weight vector and the Lagrangian multipliers is the same in this case. Thus,
the soft SVM formulation with hinge loss is strikingly similar to the hard SVM formulation.
This similarity is less pronounced for other slack penalty functions such as quadratic loss.

The soft version of SVMs also allows an unconstrained primal formulation by eliminating
the margin constraints and slack variables simultaneously. This is achieved by substituting
ξi = max{0, 1 − yi[W ·Xi + b]} in the primal objective function of Eq. 10.56. This results
in an unconstrained optimization (minimization) problem purely in terms of W and b:

O =
||W ||2

2
+ C

n∑
i=1

max{0, 1− yi[W ·Xi + b]}. (10.59)

One can use a gradient descent approach, which is analogous to the gradient ascent method
used in logistic regression. The partial derivatives of nondifferentiable function O with
respect to w1, . . . wd and b are approximated on a casewise basis, depending on whether
or not the term inside the maximum function evaluates to a positive quantity. The precise
derivation of the gradient descent steps is left as an exercise for the reader. While the dual

5The additional term in LP involving ξi is (C − βi − λi)ξi. This term evaluates to 0 because the partial
derivative of LP with respect to ξi is (C−βi−λi). This partial derivative must evaluate to 0 for optimality
of LP .
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approach is more popular, the primal approach is intuitively simpler, and it is often more
efficient when an approximate solution is desired.

10.6.2.1 Comparison with Other Linear Models

The normal vector to a linear separating hyperplane can be viewed as a direction along
which the data points of the two classes are best separated. Fisher’s linear discriminant
also achieves this goal by maximizing the ratio of the between-class scatter to the within-
class scatter along an optimally chosen vector. However, an important distinguishing feature
of SVMs is that they focus extensively on the decision boundary region between the two
classes because this is the most uncertain region, which is prone to classification error.
Fisher’s discriminant focuses on the global separation between the two classes and may not
necessarily provide the best separation in the uncertain boundary region. This is the reason
that SVMs often have better generalization behavior for noisy data sets that are prone to
overfitting.

It is instructive to express logistic regression as a minimization problem by using the
negative of the log-likelihood function and then comparing it with SVMs. The coefficients
(θ0, . . . θd) in logistic regression are analogous to the coefficients (b,W ) in SVMs. SVMs have
a margin component to increase the generalization power of the classifier, just as logistic
regression uses regularization. Interestingly, the margin component ||W ||2/2 in SVMs has
an identical form to the regularization term

∑d
i=1 θ

2
i /2 in logistic regression. SVMs have

slack penalties just as logistic regression implicitly penalizes the probability of mistakes
in the log-likelihood function. However, the slack is computed using margin violations in
SVMs, whereas the penalties in logistic regression are computed as a smooth function of
the distances from the decision boundary. Specifically, the log-likelihood function in logistic
regression creates a smooth loss function of the form log(1 + e−yi[θ0+θ·Xi]), whereas the
hinge loss max{0, 1− yi[W ·Xi + b]} in SVMs is not a smooth function. The nature of the
misclassification penalty is the only difference between the two models. Therefore, there are
several conceptual similarities among these models, but they emphasize different aspects of
optimization. SVMs and regularized logistic regression show similar performance in many
practical settings with poorly separable classes. However, SVMs and Fisher’s discriminant
generally perform better than logistic regression for the special case of well-separated classes.
All these methods can also be extended to nonlinear decision boundaries in similar ways.

10.6.3 Nonlinear Support Vector Machines

In many cases, linear solvers are not appropriate for problems in which the decision boundary
is not linear. To understand this point, consider the data distribution illustrated in Fig. 10.8.
It is evident that no linear separating hyperplanes can delineate the two classes. This is
because the two classes are separated by the following decision boundary:

8(x1 − 1)2 + 50(x2 − 2)2 = 1. (10.60)

Now, if one already had some insight about the nature of the decision boundary, one might
transform the training data into the new 4-dimensional space as follows:

z1 = x2
1

z2 = x1

z3 = x2
2

z4 = x2.
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Figure 10.8: Nonlinear decision surface

The decision boundary of Eq. 10.60 can be expressed linearly in terms of the variables
z1 . . . z4, by expanding Eq. 10.60 in terms of x1, x2

1, x2, and x2
2:

8x2
1 − 16x1 + 50x2

2 − 200x2 + 207 = 0
8z1 − 16z2 + 50z3 − 200z4 + 207 = 0.

Thus, each training data point is now expressed in terms of these four newly transformed
dimensions, and the classes will be linearly separable in this space. The SVM optimization
formulation can then be solved in the transformed space as a linear model, and used to
classify test instances that are also transformed to 4-dimensional space. It is important to
note that the complexity of the problem effectively increased because of the increase in the
size of the hyperplane coefficient vector W .

In general, it is possible to approximate any polynomial decision boundary by adding an
additional set of dimensions for each exponent of the polynomial. High-degree polynomials
have significant expressive power in approximating many nonlinear functions well. This
kind of transformation can be very effective in cases where one does not know whether
the decision boundary is linear or nonlinear. This is because the additional degrees of
freedom in the model, in terms of the greater number of coefficients to be learned, can
determine the linearity or nonlinearity of the decision boundary in a data-driven way. In
our previous example, if the decision boundary had been linear, the coefficients for z1 and
z3 would automatically have been learned to be almost 0, given enough training data. The
price for this additional flexibility is the increased computational complexity of the training
problem, and the larger number of coefficients that need to be learned. Furthermore, if
enough training data is not available, then this may result in overfitting where even a
simple linear decision boundary is incorrectly approximated as a nonlinear one. A different
approach, which is sometimes used to learn nonlinear decision boundaries, is known as
the “kernel trick.” This approach is able to learn arbitrary decision boundaries without
performing the transformation explicitly.
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10.6.4 The Kernel Trick

The kernel trick leverages the important observation that the SVM formulation can be fully
solved in terms of dot products (or similarities) between pairs of data points. One does not
need to know the feature values. Therefore, the key is to define the pairwise dot product (or
similarity function) directly in the d′-dimensional transformed representation Φ(X), with
the use of a kernel function K(Xi, Xj).

K(Xi, Xj) = Φ(Xi) · Φ(Xj) (10.61)

To effectively solve the SVM, recall that the transformed feature values Φ(X) need not be
explicitly computed, as long as the dot product (or kernel similarity) K(Xi, Xj) is known.
This implies that the term Xi ·Xj may be replaced by the transformed-space dot product
K(Xi, Xj) in Eq. 10.50, and the term Xi · Z in Eq. 10.53 can be replaced by K(Xi, Z) to
perform SVM classification.

LD =
n∑

i=1

λi −
1
2
·

n∑
i=1

n∑
j=1

λiλjyiyjK(Xi, Xj) (10.62)

F (Z) = sign{(
n∑

i=1

λiyiK(Xi, Z)) + b} (10.63)

Note that the bias b is also expressed in terms of dot products according to Eq. 10.58.
These modifications are carried over to the update equations discussed in Sect. 10.6.1.1, all
of which are expressed in terms of dot products.

Thus, all computations are performed in the original space, and the actual transfor-
mation Φ(·) does not need to be known as long as the kernel similarity function K(·, ·) is
known. By using kernel-based similarity with carefully chosen kernels, arbitrary nonlinear
decision boundaries can be approximated. There are different ways of modeling similarity
between Xi and Xj . Some common choices of the kernel function are as follows:

Function Form

Gaussian radial basis kernel K(Xi, Xj) = e−||Xi−Xj ||2/2σ2

Polynomial kernel K(Xi, Xj) = (Xi ·Xj + c)h

Sigmoid kernel K(Xi, Xj) = tanh(κXi ·Xj − δ)

Many of these kernel functions have parameters associated with them. In general, these
parameters may need to be tuned by holding out a portion of the training data, and using
it to test the accuracy of different choices of parameters. Many other kernels are possible
beyond the ones listed in the table above. Kernels need to satisfy a property known as
Mercer’s theorem to be considered valid. This condition ensures that the n × n kernel
similarity matrix S = [K(Xi, Xj)] is positive semidefinite, and similarities can be expressed
as dot products in some transformed space. Why must the kernel similarity matrix always be
positive semidefinite for similarities to be expressed as dot products? Note that if the n×n
kernel similarity matrix S can be expressed as the n× n dot-product matrix AAT of some
n×r transformed representation A of the points, then for any n-dimensional column vector
V , we have V

T
SV = (AV )T (AV ) ≥ 0. In other words, S is positive semidefinite. Conversely,

if the kernel matrix S is positive semi-definite then it can be expressed as a dot product
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with the eigen decomposition S = QΣ2QT = (QΣ)(QΣ)T , where Σ2 is an n × n diagonal
matrix of nonnegative eigenvalues and Q is an n × n matrix containing the eigenvectors
of S in columns. The matrix QΣ is the n-dimensional transformed representation of the
points, and it also sometimes referred to as the data-specific Mercer kernel map. This map
is data set-specific, and it is used in many nonlinear dimensionality reduction methods such
as kernel PCA.

What kind of kernel function works best for the example of Fig. 10.8? In general, there
are no predefined rules for selecting kernels. Ideally, if the similarity values K(Xi, Xj) were
defined so that a space exists, in which points with this similarity structure are linearly
separable, then a linear SVM in the transformed space Φ(·) will work well.

To explain this point, we will revisit the example of Fig. 10.8. Let X2i and X2j be the
d-dimensional vectors derived by squaring each coordinate of Xi and Xj , respectively. In
the case of Fig. 10.8, consider the transformation (z1, z2, z3, z4) in the previous section. It
can be shown that the dot product between two transformed data points can be captured
by the following kernel function:

Transformed-Dot-Product(Xi, Xj) = Xi ·Xj +X2i ·X2j . (10.64)

This is easy to verify by expanding the aforementioned expression in terms of
the transformed variables z1 . . . z4 of the two data points. The kernel function
Transformed-Dot-Product(Xi, Xj) would obtain the same Lagrangian multipliers and deci-
sion boundary as obtained with the explicit transformation z1 . . . z4. Interestingly, this kernel
is closely related to the second-order polynomial kernel.

K(Xi, Xj) = (0.5 +Xi ·Xj)2 (10.65)

Expanding the second-order polynomial kernel results in a superset of the additive terms in
Transformed-Dot-Product(Xi, Xj). The additional terms include a constant term of 0.25 and
some inter-dimensional products. These terms provide further modeling flexibility. In the
case of the 2-dimensional example of Fig. 10.8, the use of the second-order polynomial kernel
is equivalent to using an extra transformed variable z5 =

√
2x1x2 representing the product

of the values on the two dimensions and a constant dimension z6 = 0.5. These variables
are in addition to the original four variables (z1, z2, z3, z4). Since these additional variables
are redundant in this case, they will not affect the ability to discover the correct decision
boundary, although they might cause some overfitting. On the other hand, a variable such
as z5 =

√
2x1x2 would have come in handy, if the ellipse of Fig. 10.8 had been arbitrarily

oriented with respect to the axis system. A full separation of the classes would not have
been possible with a linear classifier on the original four variables (z1, z2, z3, z4). Therefore,
the second-order polynomial kernel can discover more general decision boundaries than
the transformation of the previous section. Using even higher-order polynomial kernels can
model increasingly complex boundaries but at a greater risk of overfitting.

In general, different kernels have different levels of flexibility. For example, a transformed
feature space that is implied by the Gaussian kernel of width σ can be shown to have an
infinite number of dimensions by using the polynomial expansion of the exponential term.
The parameter σ controls the relative scaling of various dimensions. A smaller value of σ
results in a greater ability to model complex boundaries, but it may also cause overfitting.
Smaller data sets are more prone to overfitting. Therefore, the optimal values of kernel
parameters depend not only on the shape of the decision boundary but also on the size of
the training data set. Parameter tuning is important in kernel methods. With proper tuning,
many kernel functions can model complex decision boundaries. Furthermore, kernels provide
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a natural route for using SVMs in complex data types. This is because kernel methods only
need the pairwise similarity between objects, and are agnostic to the feature values of the
data points. Kernel functions have been defined for text, images, sequences, and graphs.

10.6.4.1 Other Applications of Kernel Methods

The use of kernel methods is not restricted to SVM methods. These methods can be
extended to any technique in which the solutions are directly or indirectly expressed in
terms of dot products. Examples include the Fisher’s discriminant, logistic regression, linear
regression (cf. Sect. 11.5.4 of Chap. 11), dimensionality reduction, and k-means clustering.

1. Kernel k-means: The key idea is that the Euclidean distance between a data point
X and the cluster centroid μ of cluster C can be computed as a function of the dot
product between X and the data points in C:

||X−μ||2 = ||X−
∑

Xi∈C Xi

|C| ||2 = X·X−2

∑
Xi∈C X ·Xi

|C| +

∑
Xi,Xj∈C Xi ·Xj

|C|2 . (10.66)

In kernel k-means, the dot products Xi · Xj are replaced with kernel similarity val-
ues K(Xi, Xj). For the data point X, the index of its assigned cluster is obtained
by selecting the minimum value of the (kernel-based) distance in Eq. 10.66 over all
clusters. Note that the cluster centroids in the transformed space do not need to be
explicitly maintained over the different k-means iterations, although the cluster assign-
ment indices for each data point need to be maintained for computation of Eq. 10.66.
Because of its implicit nonlinear transformation approach, kernel k-means is able to
discover arbitrarily shaped clusters like spectral clustering in spite of its use of the
spherically biased Euclidean distance.

2. Kernel PCA: In conventional SVD and PCA of an n× d mean-centered data matrix
D, the basis vectors are given by the eigenvectors of DTD (columnwise dot product
matrix), and the coordinates of the transformed points are extracted from the scaled
eigenvectors of DDT (rowwise dot product matrix). While the basis vectors can no
longer be derived in kernel PCA, the coordinates of the transformed data can be
extracted. The rowwise dot product matrix DDT can be replaced with the kernel
similarity matrix S = [K(Xi, Xj)]n×n. The similarity matrix is then adjusted for
mean-centering of the data in the transformed space as S ⇐ (I− U

n )S(I−
U
n ), where U

is an n×nmatrix containing all 1s (see Exercise 17). The assumption is that the matrix
S can be approximately expressed as a dot product of the reduced data points in some
k-dimensional transformed space. Therefore, one needs to approximately factorize S
into the form AAT to extract its reduced n×k embedding A in the transformed space.
This is achieved by eigen-decomposition. Let Qk be the n × k matrix containing the
largest k eigenvectors of S, and Σk be the k × k diagonal matrix containing the
square root of the corresponding eigenvalues. Then, it is evident that S ≈ QkΣ2

kQ
T
k =

(QkΣk)(QkΣk)T , and the k-dimensional embeddings of the data points are given6 by
the rows of the n× k matrix A = QkΣk. Note that this is a truncated version of the
data-specific Mercer kernel map. This nonlinear embedding is similar to that obtained

6 The original result [450] uses a more general argument to derive S′QkΣ
−1
k as the m × k matrix of

k-dimensional embedded coordinates of any out-of-sample m× d matrix D′. Here, S′ = D′DT is the m×n
matrix of kernel similarities between out-of-sample points in D′ and in-sample points in D. However, when
D′ = D, this expression is (more simply) equivalent to QkΣk by expanding S′ = S ≈ QkΣ

2
kQ

T
k .
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by ISOMAP; however, unlike ISOMAP, out-of-sample points can also be transformed
to the new space. It is noteworthy that the embedding of spectral clustering is also
expressed in terms of the large eigenvectors7 of a sparsified similarity matrix, which
is better suited to preserving local similarities for clustering. In fact, most forms of
nonlinear embeddings can be shown to be large eigenvectors of similarity matrices (cf.
Table 2.3 of Chap. 2), and are therefore special cases of kernel PCA.

10.7 Neural Networks

Neural networks are a model of simulation of the human nervous system. The human nervous
system is composed of cells, referred to as neurons. Biological neurons are connected to one
another at contact points, which are referred to as synapses. Learning is performed in living
organisms by changing the strength of synaptic connections between neurons. Typically, the
strength of these connections change in response to external stimuli. Neural networks can
be considered a simulation of this biological process.

As in the case of biological networks, the individual nodes in artificial neural networks
are referred to as neurons. These neurons are units of computation that receive input from
some other neurons, make computations on these inputs, and feed them into yet other
neurons. The computation function at a neuron is defined by the weights on the input
connections to that neuron. This weight can be viewed as analogous to the strength of a
synaptic connection. By changing these weights appropriately, the computation function
can be learned, which is analogous to the learning of the synaptic strength in biological
neural networks. The “external stimulus” in artificial neural networks for learning these
weights is provided by the training data. The idea is to incrementally modify the weights
whenever incorrect predictions are made by the current set of weights.

The key to the effectiveness of the neural network is the architecture used to arrange
the connections among nodes. A wide variety of architectures exist, starting from a simple
single-layer perceptron to complex multilayer networks.

10.7.1 Single-Layer Neural Network: The Perceptron

The most basic architecture of a neural network is referred to as the perceptron. An example
of the perceptron architecture is illustrated in Fig. 10.10a. The perceptron contains two
layers of nodes, which correspond to the input nodes, and a single output node. The number
of input nodes is exactly equal to the dimensionality d of the underlying data. Each input
node receives and transmits a single numerical attribute to the output node. Therefore,
the input nodes only transmit input values and do not perform any computation on these
values. In the basic perceptron model, the output node is the only node that performs
a mathematical function on its inputs. The individual features in the training data are
assumed to be numerical. Categorical attributes are handled by creating a separate binary
input for each value of the categorical attribute. This is logically equivalent to binarizing
the categorical attribute into multiple attributes. For simplicity of further discussion, it will
be assumed that all input variables are numerical. Furthermore, it will be assumed that the
classification problem contains two possible values for the class label, drawn from {−1,+1}.

7Refer to Sect. 19.3.4 of Chap. 19. The small eigenvectors of the symmetric Laplacian are the same as the
large eigenvectors of S = Λ−1/2WΛ−1/2. Here, W is often defined by the sparsified heat-kernel similarity
between data points, and the factors involving Λ−1/2 provide local normalization of the similarity values
to handle clusters of varying density.
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As discussed earlier, each input node is connected by a weighted connection to the output
node. These weights define a function from the values transmitted by the input nodes to
a binary value drawn from {−1,+1}. This value can be interpreted as the perceptron’s
prediction of the class variable of the test instance fed to the input nodes, for a binary-class
value drawn from {−1,+1}. Just as learning is performed in biological systems by modifying
synaptic strengths, the learning in a perceptron is performed by modifying the weights of
the links connecting the input nodes to the output node whenever the predicted label does
not match the true label.

The function learned by the perceptron is referred to as the activation function, which
is a signed linear function. This function is very similar to that learned in SVMs for map-
ping training instances to binary class labels. Let W = (w1 . . . wd) be the weights for the
connections of d different inputs to the output neuron for a data record of dimensionality d.
In addition, a bias b is associated with the activation function. The output zi ∈ {−1,+1}
for the feature set (x1

i . . . x
d
i ) of the ith data record Xi, is as follows:

zi =sign{
d∑

j=1

wjx
j
i + b} (10.67)

= sign{W ·Xi + b} (10.68)

The value zi represents the prediction of the perceptron for the class variable of Xi. It is,
therefore, desired to learn the weights, so that the value of zi is equal to yi for as many
training instances as possible. The error in prediction (zi − yi) may take on any of the
values of −2, 0, or +2. A value of 0 is attained when the predicted class is correct. The
goal in neural network algorithms is to learn the vector of weights W and bias b, so that zi
approximates the true class variable yi as closely as possible.

The basic perceptron algorithm starts with a random vector of weights. The algorithm
then feeds the input data items Xi into the neural network one by one to create the pre-
diction zi. The weights are then updated, based on the error value (zi − yi). Specifically,
when the data point Xi is fed into it in the tth iteration, the weight vector W

t
is updated

as follows:
W

t+1
= W

t
+ η(yi − zi)Xi. (10.69)

The parameter η regulates the learning rate of the neural network. The perceptron algorithm
repeatedly cycles through all the training examples in the data and iteratively adjusts
the weights until convergence is reached. The basic perceptron algorithm is illustrated in
Fig. 10.9. Note that a single training data point may be cycled through many times. Each
such cycle is referred to as an epoch.

Let us examine the incremental term (yi − zi)Xi in the update of Eq. 10.69, without
the multiplicative factor η. It can be shown that this term is a heuristic approximation8 of
the negative of the gradient of the least-squares prediction error (yi − zi)2 = (yi − sign(W ·
Xi − b))2 of the class variable, with respect to the vector of weights W . The update in this
case is performed on a tuple-by-tuple basis, rather than globally, over the entire data set, as
one would expect in a global least-squares optimization. Nevertheless, the basic perceptron
algorithm can be considered a modified version of the gradient descent method, which
implicitly minimizes the squared error of prediction. It is easy to see that nonzero updates
are made to the weights only when errors are made in categorization. This is because the
incremental term in Eq. 10.69 will be 0 whenever the predicted value zi is the same as the
class label yi.

8The derivative of the sign function is replaced by only the derivative of its argument. The derivative of
the sign function is zero everywhere, except at zero, where it is indeterminate.
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Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm
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Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the
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nodes in the next layer. Therefore, the topology of the multilayer feed-forward network is
automatically determined, after the number of layers, and the number of nodes in each layer,
have been specified by the analyst. The basic perceptron may be viewed as a single-layer
feed-forward network. A popularly used model is one in which a multilayer feed-forward
network contains only a single hidden layer. Such a network may be considered a two-
layer feed-forward network. An example of a two-layer feed-forward network is illustrated
in Fig. 10.10b. Another aspect of the multilayer feed-forward network is that it is not
restricted to the use of linear signed functions of the inputs. Arbitrary functions such as
the logistic, sigmoid, or hyperbolic tangents may be used in different nodes of the hidden
layer and output layer. An example of such a function, when applied to the training tuple
Xi = (x1

i . . . x
d
i ), to yield an output value of zi, is as follows:

zi =
d∑

j=1

wj
1

1 + e−xj
i

+ b. (10.70)

The value of zi is no longer a predicted output of the final class label in {−1,+1}, if it refers
to a function computed at the hidden layer nodes. This output is then propagated forward
to the next layer.

In the single-layer neural network, the training process was relatively straightforward
because the expected output of the output node was known to be equal to the training label
value. The known ground truth was used to create an optimization problem in least squares
form, and update the weights with a gradient-descent method. Because the output node
is the only neuron with weights in a single-layer network, the update process is easy to
implement. In the case of multilayer networks, the problem is that the ground-truth output
of the hidden layer nodes are not known because there are no training labels associated with
the outputs of these nodes. Therefore, a question arises as to how the weights of these nodes
should be updated when a training example is classified incorrectly. Clearly, when a classi-
fication error is made, some kind of “feedback” is required from the nodes in the forward
layers to the nodes in earlier layers about the expected outputs (and corresponding errors).
This is achieved with the use of the backpropagation algorithm. Although this algorithm is
not discussed in detail in this chapter, a brief summary is provided here. The backpropa-
gation algorithm contains two main phases, which are applied in the weight update process
for each training instance:

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to the class
label of the training instance, to check whether or not the predicted label is an error.

2. Backward phase: The main goal of the backward phase is to learn weights in the
backward direction by providing an error estimate of the output of a node in the
earlier layers from the errors in later layers. The error estimate of a node in the
hidden layer is computed as a function of the error estimates and weights of the
nodes in the layer ahead of it. This is then used to compute an error gradient with
respect to the weights in the node and to update the weights of this node. The actual
update equation is not very different from the basic perceptron at a conceptual level.
The only differences that arise are due to the nonlinear functions commonly used in
hidden layer nodes, and the fact that errors at hidden layer nodes are estimated via
backpropagation, rather than directly computed by comparison of the output to a
training label. This entire process is propagated backwards to update the weights of
all the nodes in the network.
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The basic framework of the multilayer update algorithm is the same as that for the single-
layer algorithm illustrated in Fig. 10.9. The major difference is that it is no longer possible to
use Eq. 10.69 for the hidden layer nodes. Instead, the update procedure is substituted with
the forward–backward approach discussed above. As in the case of the single-layer network,
the process of updating the nodes is repeated to convergence by repeatedly cycling through
the training data in epochs. A neural network may sometimes require thousands of epochs
through the training data to learn the weights at the different nodes.

A multilayer neural network is more powerful than a kernel SVM in its ability to capture
arbitrary functions. A multilayer neural network has the ability to not only capture decision
boundaries of arbitrary shapes, but also capture noncontiguous class distributions with
different decision boundaries in different regions of the data. Logically, the different nodes
in the hidden layer can capture the different decision boundaries in different regions of
the data, and the node in the output layer can combine the results from these different
decision boundaries. For example, the three different nodes in the hidden layer of Fig. 10.10b
could conceivably capture three different nonlinear decision boundaries of different shapes
in different localities of the data. With more nodes and layers, virtually any function can
be approximated. This is more general than what can be captured by a kernel-based SVM
that learns a single nonlinear decision boundary. In this sense, neural networks are viewed
as universal function approximators. The price of this generality is that there are several
implementation challenges in neural network design:

1. The initial design of the topology of the network presents many trade-off challenges for
the analyst. A larger number of nodes and hidden layers provides greater generality,
but a corresponding risk of overfitting. Little guidance is available about the design of
the topology of the neural network because of poor interpretability associated with the
multilayer neural network classification process. While some hill climbing methods can
be used to provide a limited level of learning of the correct neural network topology,
the issue of good neural network design still remains somewhat of an open question.

2. Neural networks are slow to train and sometimes sensitive to noise. As discussed
earlier, thousands of epochs may be required to train a multilayer neural network.
A larger network is likely to have a very slow learning process. While the training
process of a neural network is slow, it is relatively efficient to classify test instances.

The previous discussion addresses only binary class labels. To generalize the approach to
multiclass problems, a multiclass meta-algorithm discussed in the next chapter may be used.
Alternatively, it is possible to modify both the basic perceptron model and the general
neural network model to allow multiple output nodes. Each output node corresponds to the
predicted value of a specific class label. The overall training process is exactly identical to
the previous case, except that the weights of each output node now need to be trained.

10.7.3 Comparing Various Linear Models

Like neural networks, logistic regression also updates model parameters based on mistakes
in categorization. This is not particularly surprising because both classifiers are linear clas-
sifiers but with different forms of the objective function for optimization. In fact, the use
of some forms of logistic activation functions in the perceptron algorithm can be shown
to be approximately equivalent to logistic regression. It is also instructive to examine the
relationship of neural networks with SVM methods. In SVMs, the optimization function is
based on the principle of maximum margin separation. This is different from neural net-
works, where the errors of predictions are directly penalized and then optimized with the use
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of a hill-climbing approach. In this sense, the SVM model has greater sophistication than
the basic perceptron model by using the maximum margin principle to better focus on the
more important decision boundary region. Furthermore, the generalization power of neu-
ral networks can be improved by using a (weighted) regularization penalty term λ||W ||2/2
in the objective function. Note that this regularization term is similar to the maximum
margin term in SVMs. The maximum margin term is, in fact, also referred to as the regu-
larization term for SVMs. Variations of SVMs exist, in which the maximum margin term
is replaced with an L1 penalty

∑d
i=1 |wi|. In such cases, the regularization interpretation is

more natural than a margin-based interpretation. Furthermore, certain forms of the slack
term in SVMs (e.g., quadratic slack) are similar to the main objective function in other
linear models (e.g., least-squares models). The main difference is that the slack term is
computed from the margin separators in SVMs rather than the decision boundary. This is
consistent with the philosophy of SVMs that discourages training data points from not only
being on the wrong side of the decision boundary, but also from being close to the decision
boundary. Therefore, various linear models share a number of conceptual similarities, but
they emphasize different aspects of optimization. This is the reason that maximum margin
models are generally more robust to noise than linear models that use only distance-based
penalties to reduce the number of data points on the wrong side of the separating hyper-
planes. It has experimentally been observed that neural networks are sensitive to noise. On
the other hand, multilayer neural networks can approximate virtually any complex function
in principle.

10.8 Instance-Based Learning

Most of the classifiers discussed in the previous sections are eager learners in which the
classification model is constructed up front and then used to classify a specific test instance.
In instance-based learning, the training is delayed until the last step of classification. Such
classifiers are also referred to as lazy learners. The simplest principle to describe instance-
based learning is as follows:

Similar instances have similar class labels.

A natural approach for leveraging this general principle is to use nearest-neighbor clas-
sifiers. For a given test instance, the closest m training examples are determined. The
dominant label among these m training examples is reported as the relevant class. In some
variations of the model, an inverse distance-weighted scheme is used, to account for the
varying importance of the m training instances that are closest to the test instance. An
example of such an inverse weight function of the distance δ is f(δ) = e−δ2/t2 , where t is a
user-defined parameter. Here, δ is the distance of the training point to the test instance. This
weight is used as a vote, and the class with the largest vote is reported as the relevant label.

If desired, a nearest-neighbor index may be constructed up front, to enable more efficient
retrieval of instances. The major challenge with the use of the nearest-neighbor classifier is
the choice of the parameter m. In general, a very small value of m will not lead to robust
classification results because of noisy variations within the data. On the other hand, large
values of m will lose sensitivity to the underlying data locality. In practice, the appropriate
value of m is chosen in a heuristic way. A common approach is to test different values
of m for accuracy over the training data. While computing the m-nearest neighbors of a
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training instance X, the data point X is not included9 among the nearest neighbors. A
similar approach can be used to learn the value of t in the distance-weighted scheme.

10.8.1 Design Variations of Nearest Neighbor Classifiers

A number of design variations of nearest-neighbor classifiers are able to achieve more effec-
tive classification results. This is because the Euclidean function is usually not the most effec-
tive distance metric in terms of its sensitivity to feature and class distribution. The reader
is advised to review Chap. 3 on distance function design. Both unsupervised and supervised
distance design methods can typically provide more effective classification results. Instead
of using the Euclidean distance metric, the distance between two d-dimensional points X
and Y is defined with respect to a d× d matrix A.

Dist(X,Y ) =
√
(X − Y )A(X − Y )T (10.71)

This distance function is the same as the Euclidean metric when A is the identity matrix.
Different choices of A can lead to better sensitivity of the distance function to the local
and global data distributions. These different choices will be discussed in the following
subsections.

10.8.1.1 Unsupervised Mahalanobis Metric

The Mahalanobis metric is introduced in Chap. 3. In this case, the value of A is chosen to
be the inverse of the d × d covariance matrix Σ of the data set. The (i, j)th entry of the
matrix Σ is the covariance between the dimensions i and j. Therefore, the Mahalanobis
distance is defined as follows:

Dist(X,Y ) =
√
(X − Y )Σ−1(X − Y )T . (10.72)

The Mahalanobis metric adjusts well to the different scaling of the dimensions and the
redundancies across different features. Even when the data is uncorrelated, the Mahalanobis
metric is useful because it auto-scales for the naturally different ranges of attributes describ-
ing different physical quantities, such as age and salary. Such a scaling ensures that no single
attribute dominates the distance function. In cases where the attributes are correlated, the
Mahalanobis metric accounts well for the varying redundancies in different features. How-
ever, its major weakness is that it does not account for the varying shapes of the class
distributions in the underlying data.

10.8.1.2 Nearest Neighbors with Linear Discriminant Analysis

To obtain the best results with a nearest-neighbor classifier, the distance function needs
to account for the varying distribution of the different classes. For example, in the case of
Fig. 10.11, there are two classes A and B, which are represented by “.” and “*,” respectively.
The test instance denoted by X lies on the side of the boundary related to class A. However,
the Euclidean metric does not adjust well to the arrangement of the class distribution, and a
circle drawn around the test instance seems to include more points from class B than class A.

One way of resolving the challenges associated with this scenario, is to weight the most
discriminating directions more in the distance function with an appropriate choice of the

9This approach is also referred to as leave-one-out cross-validation, and is described in detail in Sect. 10.9
on classifier evaluation.



10.8. INSTANCE-BASED LEARNING 333

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FEATURE X

FE
A

TU
R

E
 Y

X<−TEST INSTANCE

CLASS A

CLASS B

LINEAR
DISCRIMINANT

Figure 10.11: Importance of class sensitivity in distance function design

matrix A in Eq. 10.71. In the case of Fig. 10.11, the best discriminating direction is illus-
trated pictorially. Fisher’s linear discriminant, discussed in Sect. 10.2.1.4, can be used to
determine this direction, and map the data into a 1-dimensional space. In this 1-dimensional
space, the different classes are separated out perfectly. The nearest-neighbor classifier will
work well in this newly projected space. This is a very special example where only a 1-
dimensional projection works well. However, it may not be generalizable to an arbitrary
data set.

A more general way of computing the distances in a class-sensitive way, is to use a soft
weighting of different directions, rather than selecting specific dimensions in a hard way.
This can be achieved with the use of an appropriate choice of matrix A in Eq. 10.71. The
choice of matrix A defines the shape of the neighborhood of a test instance. A distortion
of this neighborhood from the circular Euclidean contour corresponds to a soft weighting,
as opposed to a hard selection of specific directions. A soft weighting is also more robust
in the context of smaller training data sets where the optimal linear discriminant cannot
be found without overfitting. Thus, the core idea is to “elongate” the neighborhoods along
the less discriminative directions and “shrink” the neighborhoods along the more discrimi-
native directions with the use of matrix A. Note that the elongation of a neighborhood in
a direction by a particular factor α > 1, is equivalent to de-emphasizing that direction by
that factor because distance components in that direction need to be divided by α. This is
also done in the case of the Mahalanobis metric, except that the Mahalanobis metric is an
unsupervised approach that is agnostic to the class distribution. In the case of the unsu-
pervised Mahalanobis metric, the level of elongation achieved by the matrix A is inversely
dependent on the variance along the different directions. In the supervised scenario, the
goal is to elongate the directions, so that the level of elongation is inversely dependent on
the ratio of the interclass variance to intraclass variance along the different directions.

Let D be the full database, and Di be the portion of the data set belonging to class i.
Let μ represent the mean of the entire data set. Let pi = |Di|/|D| be the fraction of data
points belonging to class i, μi be the d-dimensional row vector of means of Di, and Σi be the
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d× d covariance matrix of Di. Then, the scaled10 within-class scatter matrix Sw is defined
as follows:

Sw =
k∑

i=1

piΣi. (10.73)

The between-class scatter matrix Sb may be computed as follows:

Sb =
k∑

i=1

pi(μi − μ)T (μi − μ). (10.74)

Note that the matrix Sb is a d×d matrix because it results from the product of a d×1 matrix
with a 1×d matrix. Then, the matrix A (of Eq. 10.71), which provides the desired distortion
of the distances on the basis of class distribution, can be shown to be the following:

A = S−1
w SbS

−1
w . (10.75)

It can be shown that this choice of the matrix A provides an excellent discrimination between
the different classes, where the elongation in each direction depends inversely on ratio of
the between-class variance to within-class variance along the different directions. The reader
is referred to the bibliographic notes for pointers to the derivation of the aforementioned
steps.

10.9 Classifier Evaluation

Given a classification model, how do we quantify its accuracy on a given data set? Such
a quantification has several applications, such as evaluation of classifier effectiveness, com-
paring different models, selecting the best one for a particular data set, parameter tuning,
and several meta-algorithms such as ensemble analysis. The last of these applications will
be discussed in the next chapter. This leads to several challenges, both in terms of method-
ology used for the evaluation, and the specific approach used for quantification. These two
challenges are stated as follows:

1. Methodological issues: The methodological issues are associated with dividing the
labeled data appropriately into training and test segments for evaluation. As will
become apparent later, the choice of methodology has a direct impact on the eval-
uation process, such as the underestimation or overestimation of classifier accuracy.
Several approaches are possible, such as holdout, bootstrap, and cross-validation.

2. Quantification issues: The quantification issues are associated with providing a numer-
ical measure for the quality of the method after a specific methodology (e.g., cross-
validation) for evaluation has been selected. Examples of such measures could include
the accuracy, the cost-sensitive accuracy, or a receiver operating characteristic curve
quantifying the trade-off between true positives and false positives. Other types of
numerical measures are specifically designed to compare the relative performance of
classifiers.

In the following, these different aspects of classifier evaluation will be studied in detail.
10The unscaled version may be obtained by multiplying Sw with the number of data points. There

is no difference to the final result whether the scaled or unscaled version is used, within a constant of
proportionality.
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Figure 10.12: Segmenting the labeled data for parameter tuning and evaluation

10.9.1 Methodological Issues

While the problem of classification is defined for unlabeled test examples, the evaluation
process does need labels to be associated with the test examples as well. These labels
correspond to the ground truth that is required in the evaluation process, but not used
in the training. The classifier cannot use the same examples for both training and testing
because such an approach will overestimate the accuracy of the classifier due to overfitting.
It is desirable to construct models with high generalizability to unseen test instances.

A common mistake in the process of bench-marking classification models is that ana-
lysts often use the test set to tune the parameters of the classification algorithm or make
other choices about classifier design. Such an approach might overestimate the true accu-
racy because knowledge of the test set has been implicitly used in the training process. In
practice, the labeled data should be divided into three parts, which correspond to (a) the
model-building part of the labeled data, (b) the validation part of the labeled data, and (c)
the testing data. This division is illustrated in Fig. 10.12. The validation part of the data
should be used for parameter tuning or model selection. Model selection (cf. Sect. 11.8.3.4 of
Chap. 11) refers to the process of deciding which classification algorithm is best suited to a
particular data set. The testing data should not even be looked at during this phase. After
tuning the parameters, the classification model is sometimes reconstructed on the entire
training data (including the validation but not test portion). Only at this point, the testing
data can be used for evaluating the classification algorithm at the very end. Note that if an
analyst uses insights gained from the resulting performance on the test data to again adjust
the algorithm in some way, then the results will be contaminated with knowledge from the
test set.

This section discusses how the labeled data may be divided into the data used for
constructing the tuned model (i.e., first two portions) and testing data (i.e., third portion) to
accurately estimate the classification accuracy. The methodologies discussed in this section
are also used for dividing the first two portions into the first and second portions (e.g.,
for parameter tuning), although we consistently use the terminologies “training data” and
“testing data” to describe the two portions of the division. One problem with segmenting
the labeled data is that it affects the measured accuracy depending on how the segmentation
is done. This is especially the case when the amount of labeled data is small because one
might accidently sample a small test data set which is not an accurate representative of the
training data. For cases in which the labeled data is small, careful methodological variations
are required to prevent erroneous evaluations.
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10.9.1.1 Holdout

In the holdout method, the labeled data is randomly divided into two disjoint sets, cor-
responding to the training and test data. Typically a majority (e.g., two-thirds or three-
fourths) is used as the training data, and the remaining is used as the test data. The
approach can be repeated several times with multiple samples to provide a final estimate.
The problem with this approach is that classes that are overrepresented in the training
data are also underrepresented in the test data. These random variations can have a signif-
icant impact when the original class distribution is imbalanced to begin with. Furthermore,
because only a subset of the available labeled data is used for training, the full power of the
training data is not reflected in the error estimate. Therefore, the error estimates obtained
are pessimistic. By repeating the process over b different holdout samples, the mean and
variance of the error estimates can be determined. The variance can be helpful in creating
statistical confidence intervals on the error.

One of the challenges with using the holdout method robustly is the case when the classes
are imbalanced. Consider a data set containing 1000 data points, with 990 data points
belonging to one class and 10 data points belonging to the other class. In such cases, it is
possible for a test sample of 200 data points to contain not even one data point belonging
to the rare class. Clearly, in such cases, it will be difficult to estimate the classification
accuracy, especially when cost-sensitive accuracy measures are used that weigh the various
classes differently. Therefore, a reasonable alternative is to implement the holdout method
by independently sampling the two classes at the same level. Therefore, exactly 198 data
points will be sampled from the first class, and 2 data points will be sampled from the rare
class to create the test data set. Such an approach ensures that the classes are represented
to a similar degree in both the training and test sets.

10.9.1.2 Cross-Validation

In cross-validation, the labeled data is divided into m disjoint subsets of equal size n/m. A
typical choice of m is around 10. One of the m segments is used for testing, and the other
(m− 1) segments are used for training. This approach is repeated by selecting each of the
m different segments in the data as a test set. The average accuracy over the different test
sets is then reported. The size of the training set is (m − 1)n/m. When m is chosen to be
large, this is almost equal to the labeled data size, and therefore the estimation error is
close to what would be obtained with the original training data, but only for a small set of
test examples of size n/m. However, because every labeled instance is represented exactly
once in the testing over the m different test segments, the overall accuracy of the cross-
validation procedure tends to be a highly representative, but pessimistic estimate, of model
accuracy. A special case is one where m is chosen to be n. Therefore, (n − 1) examples
are used for training, and one example is used for testing. This is averaged over the n
different ways of picking the test example. This is also referred to as leave-one-out cross-
validation. This special case is rather expensive for large data sets because it requires the
application of the training procedure n times. Nevertheless, such an approach is particularly
natural for lazy learning methods, such as the nearest-neighbor classifier, where a training
model does not need to be constructed up front. By repeating the process over b different
random m-way partitions of the data, the mean and variance of the error estimates may
be determined. The variance can be helpful in determining statistical confidence intervals
on the error. Stratified cross-validation uses proportional representation of each class in the
different folds and usually provides less pessimistic results.
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10.9.1.3 Bootstrap

In the bootstrap method, the labeled data is sampled uniformly with replacement, to create
a training data set, which might possibly contain duplicates. The labeled data of size n is
sampled n times with replacement. This results in a training data with the same size as the
original labeled data. However, the training typically contains duplicates and also misses
some points in the original labeled data.

The probability that a particular data point is not included in a sample is given by
(1−1/n). Therefore, the probability that the data point is not included in n samples is given
by (1−1/n)n. For large values of n, this expression evaluates to approximately 1/e, where e
is the base of the natural logarithm. The fraction of the labeled data points included at least
once in the training data is therefore 1−1/e ≈ 0.632. The training model M is constructed
on the bootstrapped sample containing duplicates. The overall accuracy is computed using
the original set of full labeled data as the test examples. The estimate is highly optimistic of
the true classifier accuracy because of the large overlap between training and test examples.
In fact, a 1-nearest neighbor classifier will always yield 100% accuracy for the portion of
test points included in the bootstrap sample and the estimates are therefore not realistic in
many scenarios. By repeating the process over b different bootstrap samples, the mean and
the variance of the error estimates may be determined.

A better alternative is to use leave-one-out bootstrap. In this approach, the accuracy
A(X) of each labeled instance X is computed using the classifier performance on only the
subset of the b bootstrapped samples in which X is not a part of the bootstrapped sample
of training data. The overall accuracy Al of the leave-one-out bootstrap is the mean value of
A(X) over all labeled instances X. This approach provides a pessimistic accuracy estimate.
The 0.632-bootstrap further improves this accuracy with a “compromise” approach. The
average training-data accuracy At over the b bootstrapped samples is computed. This is a
highly optimistic estimate. For example, At will always be 100% for a 1-nearest neighbor
classifier. The overall accuracy A is a weighted average of the leave-one-out accuracy and
the training-data accuracy.

A = (0.632) ·Al + (0.368) ·At (10.76)

In spite of the compromise approach, the estimates of 0.632 bootstrap are usually optimistic.
The bootstrap method is more appropriate when the size of the labeled data is small.

10.9.2 Quantification Issues

This section will discuss how the quantification of the accuracy of a classifier is performed
after the training and test set for a classifier are fixed. Several measures of accuracy are
used depending on the nature of the classifier output:

1. In most classifiers, the output is predicted in the form of a label associated with the
test instance. In such cases, the ground-truth label of the test instance is compared
with the predicted label to generate an overall value of the classifier accuracy.

2. In many cases, the output is presented as a numerical score for each labeling possibility
for the test instance. An example is the Bayes classifier where a probability is reported
for a test instance. As a convention, it will be assumed that higher values of the score
imply a greater likelihood to belong to a particular class.

The following sections will discuss methods for quantifying accuracy in both scenarios.
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10.9.2.1 Output as Class Labels

When the output is presented in the form of class labels, the ground-truth labels are com-
pared to the predicted labels to yield the following measures:

1. Accuracy: The accuracy is the fraction of test instances in which the predicted value
matches the ground-truth value.

2. Cost-sensitive accuracy: Not all classes are equally important in all scenarios while
comparing the accuracy. This is particularly important in imbalanced class problems,
which will be discussed in more detail in the next chapter. For example, consider an
application in which it is desirable to classify tumors as malignant or nonmalignant
where the former is much rarer than the latter. In such cases, the misclassification
of the former is often much less desirable than misclassification of the latter. This is
frequently quantified by imposing differential costs c1 . . . ck on the misclassification of
the different classes. Let n1 . . . nk be the number of test instances belonging to each
class. Furthermore, let a1 . . . ak be the accuracies (expressed as a fraction) on the
subset of test instances belonging to each class. Then, the overall accuracy A can be
computed as a weighted combination of the accuracies over the individual labels.

A =
∑k

i=1 ciniai∑k
i=1 cini

(10.77)

The cost sensitive accuracy is the same as the unweighted accuracy when all costs
c1 . . . ck are the same.

Aside from the accuracy, the statistical robustness of a model is also an important issue. For
example, if two classifiers are trained over a small number of test instances and compared,
the difference in accuracy may be a result of random variations, rather than a truly statis-
tically significant difference between the two classifiers. Therefore, it is important to design
statistical measures to quantify the specific advantage of one classifier over the other.

Most statistical methodologies such as holdout, bootstrap, and cross-validation use b > 1
different randomly sampled rounds to obtain multiple estimates of the accuracy. For the
purpose of discussion, let us assume that b different rounds (i.e., b differentm-way partitions)
of cross-validation are used. Let M1 and M2 be two models. Let Ai,1 and Ai,2 be the
respective accuracies of the models M1 and M2 on the partitioning created by the ith
round of cross-validation. The corresponding difference in accuracy is δai = Ai,1 − Ai,2.
This results in b estimates δa1 . . . δab. Note that δai might be either positive or negative,
depending on which classifier provides superior performance on a particular round of cross-
validation. Let the average difference in accuracy between the two classifiers be ΔA.

ΔA =
∑b

i=1 δai
b

(10.78)

The standard deviation σ of the difference in accuracy may be estimated as follows:

σ =

√∑b
i=1(δai −ΔA)2

b− 1
. (10.79)

Note that the sign of ΔA tells us which classifier is better than the other. For example, if
ΔA > 0 then model M1 has higher average accuracy than M2. In such a case, it is desired
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to determine a statistical measure of the confidence (or, a probability value) that M1 is
truly better than M2.

The idea here is to assume that the different samples δa1 . . . δab are sampled from a
normal distribution. Therefore, the estimated mean and standard deviations of this distri-
bution are given by ΔA and σ, respectively. The standard deviation of the estimated mean
ΔA of b samples is therefore σ/

√
b according to the central-limit theorem. Then, the number

of standard deviations s by which ΔA is different from the break-even accuracy difference
of 0 is as follows:

s =

√
b|ΔA− 0|

σ
. (10.80)

When b is large, the standard normal distribution with zero mean and unit variance can
be used to quantify the probability that one classifier is truly better than the other. The
probability in any one of the symmetric tails of the standard normal distribution, more than
s standard deviations away from the mean, provides the probability that this variation is
not significant, and it might be a result of chance. This probability is subtracted from 1 to
determine the confidence that one classifier is truly better than the other.

It is often computationally expensive to use large values of b. In such cases, it is no
longer possible to estimate the standard deviation σ robustly with the use of a small num-
ber b of samples. To adjust for this, the Student’s t-distribution with (b − 1) degrees of
freedom is used instead of the normal distribution. This distribution is very similar to the
normal distribution, except that it has a heavier tail to account for the greater estimation
uncertainty. In fact, for large values of b, the t-distribution with (b− 1) degrees of freedom
converges to the normal distribution.

10.9.2.2 Output as Numerical Score

In many scenarios, the output of the classification algorithm is reported as a numerical
score associated with each test instance and label value. In cases where the numerical score
can be reasonably compared across test instances (e.g., the probability values returned by
a Bayes classifier), it is possible to compare the different test instances in terms of their
relative propensity to belong to a specific class. Such scenarios are more common when one
of the classes of interest is rare. Therefore, for this scenario, it is more meaningful to use
the binary class scenario where one of the classes is the positive class, and the other class is
the negative class. The discussion below is similar to the discussion in Sect. 8.8.2 of Chap.
8 on external validity measures for outlier analysis. This similarity arises from the fact that
outlier validation with class labels is identical to classifier evaluation.

The advantage of a numerical score is that it provides more flexibility in evaluating
the overall trade-off between labeling a varying number of data points as positives. This
is achieved by using a threshold on the numerical score for the positive class to define
the binary label. If the threshold is selected too aggressively to minimize the number of
declared positive class instances, then the algorithm will miss true-positive class instances
(false negatives). On the other hand, if the threshold is chosen in a more relaxed way, this will
lead to too many false positives. This leads to a trade-off between the false positives and false
negatives. The problem is that the “correct” threshold to use is never known exactly in a real
scenario. However, the entire trade-off curve can be quantified using a variety of measures,
and two algorithms can be compared over the entire trade-off curve. Two examples of such
curves are the precision–recall curve, and the receiver operating characteristic (ROC) curve.

For any given threshold t on the predicted positive-class score, the declared positive
class set is denoted by S(t). As t changes, the size of S(t) changes as well. Let G represent
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the true set (ground-truth set) of positive instances in the data set. Then, for any given
threshold t, the precision is defined as the percentage of reported positives that truly turn
out to be positive.

Precision(t) = 100 ∗ |S(t) ∩ G|
|S(t)|

The value of Precision(t) is not necessarily monotonic in t because both the numerator
and denominator may change with t differently. The recall is correspondingly defined as the
percentage of ground-truth positives that have been reported as positives at threshold t.

Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

While a natural trade-off exists between precision and recall, this trade-off is not necessarily
monotonic. One way of creating a single measure that summarizes both precision and recall
is the F1-measure, which is the harmonic mean between the precision and the recall.

F1(t) =
2 · Precision(t) ·Recall(t)
Precision(t) +Recall(t)

(10.81)

While the F1(t) measure provides a better quantification than either precision or recall, it is
still dependent on the threshold t, and is therefore still not a complete representation of the
trade-off between precision and recall. It is possible to visually examine the entire trade-off
between precision and recall by varying the value of t, and examining the trade-off between
the two quantities, by plotting the precision versus the recall. As shown later with an exam-
ple, the lack of monotonicity of the precision makes the results harder to intuitively interpret.

A second way of generating the trade-off in a more intuitive way is through the use
of the ROC curve. The true-positive rate, which is the same as the recall, is defined as
the percentage of ground-truth positives that have been predicted as positive instances at
threshold t.

TPR(t) = Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

The false-positive rate FPR(t) is the percentage of the falsely reported positives out of
the ground-truth negatives. Therefore, for a data set D with ground-truth positives G, this
measure is defined as follows:

FPR(t) = 100 ∗ |S(t)− G|
|D − G| . (10.82)

The ROC curve is defined by plotting the FPR(t) on the X-axis, and TPR(t) on the Y -axis
for varying values of t. Note that the end points of the ROC curve are always at (0, 0) and
(100, 100), and a random method is expected to exhibit performance along the diagonal line
connecting these points. The lift obtained above this diagonal line provides an idea of the
accuracy of the approach. The area under the ROC curve provides a concrete quantitative
evaluation of the effectiveness of a particular method.

To illustrate the insights gained from these different graphical representations, consider
an example of a data set with 100 points from which 5 points belong to the positive class.
Two algorithms A and B are applied to this data set that rank all data points from 1 to 100,
with lower rank representing greater propensity to belong to the positive class. Thus, the
true-positive rate and false-positive rate values can be generated by determining the ranks
of the five ground-truth positive label points. In Table 10.2, some hypothetical ranks for the
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Table 10.2: Rank of ground-truth positive instances
Algorithm Rank of positive class instances

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5
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Figure 10.13: ROC curve and precision–recall curves

five ground-truth positive label instances have been illustrated for the different algorithms.
In addition, ranks of the ground-truth positives for a random algorithm have been indicated.
The random algorithm outputs a random score for each data point. Similarly, the ranks for
a “perfect oracle” algorithm that ranks the correct top five points to belong to the positive
class have also been illustrated in the table. The resulting ROC curves are illustrated in
Fig. 10.13a. The corresponding precision–recall curves are illustrated in Fig. 10.13b. While
the precision–recall curves are not quite as nicely interpretable as the ROC curves, it is
easy to see that the relative trends between different algorithms, are the same in both cases.
In general, ROC curves are used more frequently because of the ease in interpreting the
quality of the algorithm with respect to a random classifier.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms, and the random
algorithm is inferior to all the other algorithms. On the other hand, algorithms A and B
show domination at different parts of the ROC curve. In such cases, it is hard to say that
one algorithm is strictly superior. From Table 10.2, it is clear that Algorithm A ranks three
of the correct positive instances very highly, but the remaining two positive instances are
ranked poorly. In the case of Algorithm B, the highest ranked positive instances are not as
well ranked as Algorithm A, though all five positive instances are determined much earlier
in terms of rank threshold. Correspondingly, Algorithm A dominates on the earlier part of
the ROC curve, whereas Algorithm B dominates on the later part. It is possible to use the
area under the ROC curve as a proxy for the overall effectiveness of the algorithm.
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10.10 Summary

The problem of data classification can be considered a supervised version of data clustering,
in which a predefined set of groups is provided to a learner. This predefined set of groups
is used for training the classifier to categorize unseen test examples into groups. A wide
variety of models have been proposed for data classification.

Decision trees create a hierarchical model of the training data. For each test instance, the
optimal path in the tree is used to classify unseen test instances. Each path in the tree can
be viewed as a rule that is used to classify unseen test instances. Rule-based classifiers can be
viewed as a generalization of decision trees, in which the classifier is not necessarily restricted
to characterizing the data in a hierarchical way. Therefore, multiple conflicting rules can be
used to cover the same training or test instance. Probabilistic classifiers map feature values
to unseen test instances with probabilities. The naive Bayes rule or a logistic function may
be used for effective estimation of probabilities. SVMs and neural networks are two forms
of linear classifiers. The objective functions that are optimized are different. In the case
of SVMs, the maximum margin principle is used, whereas for neural networks, the least
squares error of prediction is approximately optimized. Instance-based learning methods
are classifiers that delay learning to classification time as opposed to eager learners that
construct the classification models up front. The simplest form of instance-based learning
is the nearest-neighbor classifier. Many complex variations are possible by using different
types of distance functions and locality-centric models.

Classifier evaluation is important for testing the relative effectiveness of different train-
ing models. Numerous models such as holdout, stratified sampling, bootstrap, and cross-
validation have been proposed in the literature. Classifier evaluation can be performed
either in the context of label assignment or numerical scoring. For label assignment, either
the accuracy or the cost-sensitive accuracy may be used. For numerical scoring, the ROC
curve is used to quantify the trade-off between the true-positive and false-positive rates.

10.11 Bibliographic Notes

The problem of data classification has been studied extensively by the data mining, machine
learning, and pattern recognition communities. A number of books on these topics are
available from these different communities [33, 95, 189, 256, 389]. Two surveys on the topic
of data classification may be found in [286, 330]. A recent book [33] contains surveys on
various aspects of data classification.

Feature selection is an important problem in data classification, to ensure the modeling
algorithm is not confused by noise in the training data. Two books on feature selection may
be found in [360, 366]. Fisher’s discriminant analysis was first proposed in [207], although
a slightly different variant with the assumption of normally distributed data used in linear
discriminant analysis [379]. The most well-known decision tree algorithms include ID3 [431],
C4.5 [430], and CART [110]. Decision tree methods are also used in the context of multi-
variate splits [116], though these methods are computationally more challenging. Surveys
on decision tree algorithms may be found in [121, 393, 398]. Decision trees can be converted
into rule-based classifiers where the rules are mutually exclusive. For example, the C4.5
method has also been extended to the C4.5rules algorithm [430]. Other popular rule-based
systems include AQ [386], CN2 [177], and RIPPER [178]. Much of the discussion in this
chapter was based on these algorithms. Popular associative classification algorithms include
CBA [358], CPAR [529], and CMAR [349]. Methods for classification with discriminative
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patterns are discussed in [149]. A recent overview discussion of pattern-based classifica-
tion algorithms may be found in [115]. The naive Bayes classifier has been discussed in
detail in [187, 333, 344]. The work in [344] is particularly notable, in that it provides an
understanding and justification of the naive Bayes assumption. A brief discussion of logistic
regression models may be found in Chap. 3 of [33]. A more detailed discussion may be found
in [275].

Numerous books are available on the topic of SVMs [155, 449, 478, 494]. An excellent
tutorial on SVMs may be found in [124]. A detailed discussion of the Lagrangian relaxation
technique for solving the resulting quadratic optimization problem may be found in [485].
It has been pointed out [133] that the advantages of the primal approach in SVMs seem
to have been largely overlooked in the literature. It is sometimes mistakenly understood
that the kernel trick can only be applied to the dual; the trick can be applied to the pri-
mal formulation as well [133]. A discussion of kernel methods for SVMs may be found
in [451]. Other applications of kernels, such as nonlinear k-means and nonlinear PCA, are
discussed in [173, 450]. The perceptron algorithm was due to Rosenblatt [439]. Neural net-
works are discussed in detail in several books [96, 260]. The back-propagation algorithm is
described in detail in these books. The earliest work on instance-based classification was
discussed in [167]. The method was subsequently extended to symbolic attributes [166].
Two surveys on instance-based classification may be found in [14, 183]. Local methods
for nearest-neighbor classification are discussed in [216, 255]. Generalized instance-based
learning methods have been studied in the context of decision trees [217], rule-based meth-
ods [347], Bayes methods [214], SVMs [105, 544], and neural networks [97, 209, 281]. Methods
for classifier evaluation are discussed in [256].

10.12 Exercises

1. Compute the Gini index for the entire data set of Table 10.1, with respect to the two
classes. Compute the Gini index for the portion of the data set with age at least 50.

2. Repeat the computation of the previous exercise with the use of the entropy criterion.

3. Show how to construct a (possibly overfitting) rule-based classifier that always exhibits
100% accuracy on the training data. Assume that the feature variables of no two
training instances are identical.

4. Design a univariate decision tree with a soft maximum-margin split criterion borrowed
from SVMs. Suppose that this decision tree is generalized to the multivariate case.
How does the resulting decision boundary compare with SVMs? Which classifier can
handle a larger variety of data sets more accurately?

5. Discuss the advantages of a rule-based classifier over a decision tree.

6. Show that an SVM is a special case of a rule-based classifier. Design a rule-based
classifier that uses SVMs to create an ordered list of rules.

7. Implement an associative classifier in which only maximal patterns are used for clas-
sification, and the majority consequent label of rules fired, is reported as the label of
the test instance.

8. Suppose that you had d-dimensional numeric training data, in which it was known that
the probability density of d-dimensional data instance X in each class i is proportional



344 CHAPTER 10. DATA CLASSIFICATION

to e−||X−μi||1 , where || · ||1 is the Manhattan distance, and μi is known for each class.
How would you implement the Bayes classifier in this case? How would your answer
change if μi is unknown?

9. Explain the relationship of mutual exclusiveness and exhaustiveness of a rule set, to
the need to order the rule set, or the need to set a class as the default class.

10. Consider the rules Age > 40 ⇒ Donor and Age ≤ 50 ⇒ ¬Donor. Are these two rules
mutually exclusive? Are these two rules exhaustive?

11. For the example of Table 10.1, determine the prior probability of each class. Determine
the conditional probability of each class for cases where the Age is at least 50.

12. Implement the naive Bayes classifier.

13. For the example of Table 10.1, provide a single linear separating hyperplane. Is this
separating hyperplane unique?

14. Consider a data set containing four points located at the corners of the square. The
two points on one diagonal belong to one class, and the two points on the other
diagonal belong to the other class. Is this data set linearly separable? Provide a proof.

15. Provide a systematic way to determine whether two classes in a labeled data set are
linearly separable.

16. For the soft SVM formulation with hinge loss, show that:

(a) The weight vector is given by the same relationship W =
∑n

i=1 λiyiXi, as for
hard SVMs.

(b) The condition
∑n

i=1 λiyi = 0 holds as in hard SVMs.
(c) The Lagrangian multipliers satisfy λi ≤ C.
(d) The Lagrangian dual is identical to that of hard SVMs.

17. Show that it is possible to omit the bias parameter b from the decision boundary of
SVMs by suitably preprocessing the data set. In other words, the decision boundary is
now W ·X = 0. What is the impact of eliminating the bias parameter on the gradient
ascent approach for Lagrangian dual optimization in SVMs?

18. Show that an n×d data set can be mean-centered by premultiplying it with the n×n
matrix (I − U/n), where U is a unit matrix of all ones. Show that an n × n kernel
matrix K can be adjusted for mean centering of the data in the transformed space by
adjusting it to K ′ = (I − U/n)K(I − U/n).

19. Consider two classifiers A and B. On one data set, a 10-fold cross validation shows
that classifier A is better than B by 3%, with a standard deviation of 7% over 100
different folds. On the other data set, classifier B is better than classifier A by 1%,
with a standard deviation of 0.1% over 100 different folds. Which classifier would you
prefer on the basis of this evidence, and why?

20. Provide a nonlinear transformation which would make the data set of Exercise 14
linearly separable.

21. Let Sw and Sb be defined according to Sect. 10.2.1.3 for the binary class problem.
Let the fractional presence of the two classes be p0 and p1, respectively. Show that
Sw + p0p1Sb is equal to the covariance matrix of the data set.
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