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Towards the Next Generation of Recommender Systems:  
A Survey of the State-of-the-Art and Possible Extensions 

Gediminas Adomavicius1 and Alexander Tuzhilin2 
Abstract–The paper presents an overview of the field of recommender systems and describes the current 
generation of recommendation methods that are usually classified into the following three main 
categories: content-based, collaborative, and hybrid recommendation approaches.  The paper also 
describes various limitations of current recommendation methods and discusses possible extensions that 
can improve recommendation capabilities and make recommender systems applicable to an even broader 
range of applications.  These extensions include, among others, improvement of understanding of users 
and items, incorporation of the contextual information into the recommendation process, support for 
multi-criteria ratings, and provision of more flexible and less intrusive types of recommendations. 

Index Terms–Recommender systems, collaborative filtering, rating estimation methods, extensions to 
recommender systems. 

1.  Introduction  

Recommender systems became an important research area since the appearance of the first 

papers on collaborative filtering since the mid-1990s [45, 86, 97].  There has been much work 

done both in the industry and academia on developing new approaches to recommender systems 

over the last decade.  The interest in this area still remains high because it constitutes a problem-

rich research area and because of the abundance of practical applications that help users to deal 

with information overload and provide personalized recommendations, content and services to 

them.  Examples of such applications include recommending books, CDs and other products at 

Amazon.com [61], movies by MovieLens [67], and news at VERSIFI Technologies (formerly 

AdaptiveInfo.com) [14].  Moreover, some of the vendors have incorporated recommendation 

capabilities into their commerce servers [78]. 

 However, despite all these advances, the current generation of recommender systems still 

requires further improvements to make recommendation methods more effective and applicable 

to an even broader range of real-life applications, including recommending vacations, certain 
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types of financial services to investors, and products to purchase in a store made by a “smart” 

shopping cart [106].  These improvements include better methods for representing user behavior 

and the information about the items to be recommended, more advanced recommendation 

modeling methods, incorporation of various contextual information into the recommendation 

process, utilization of multi-criteria ratings, development of less intrusive and more flexible 

recommendation methods that also rely on the measures that more effectively determine 

performance of recommender systems. 

 In this paper, we describe various ways to extend capabilities of recommender systems. 

However, before doing this, we first present a comprehensive survey of the state-of-the-art in 

recommender systems in Section 2.  Then we identify various limitations of the current 

generation of recommendation methods and discuss some initial approaches to extending their 

capabilities in Section 3. 

2.  The Survey of Recommender Systems 

Although the roots of recommender systems can be traced back to the extensive work in the 

cognitive science [87], approximation theory [81], information retrieval [89], forecasting theories 

[6], and also have links to management science [71], and also to the consumer choice modeling 

in marketing [60], recommender systems emerged as an independent research area in the mid-

1990’s when researchers started focusing on recommendation problems that explicitly rely on the 

ratings structure.  In its most common formulation, the recommendation problem is reduced to 

the problem of estimating ratings for the items that have not been seen by a user.  Intuitively, this 

estimation is usually based on the ratings given by this user to other items and on some other 

information that will be formally described below.  Once we can estimate ratings for the yet 

unrated items, we can recommend to the user the item(s) with the highest estimated rating(s). 

More formally, the recommendation problem can be formulated as follows.  Let C be the 
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set of all users and let S be the set of all possible items that can be recommended, such as books, 

movies, or restaurants.  The space S of possible items can be very large, ranging in hundreds of 

thousands or even millions of items in some applications, such as recommending books or CDs.  

Similarly, the user space can also be very large – millions in some cases.  Let u be a utility 

function that measures usefulness of item s to user c, i.e., :u C S R× → , where R is a totally 

ordered set (e.g., non-negative integers or real numbers within a certain range).  Then for each 

user c C∈ , we want to choose such item s S′∈  that maximizes the user’s utility. More formally: 

 ,    arg max ( , )c
s S

c C s u c s
∈

′∀ ∈ =  (1) 

In recommender systems the utility of an item is usually represented by a rating, which indicates 

how a particular user liked a particular item, e.g., John Doe gave the movie “Harry Potter” the 

rating of 7 (out of 10).  However, as indicated earlier, in general utility can be an arbitrary 

function, including a profit function.  Depending on the application, utility u can either be 

specified by the user, as is often done for the user-defined ratings, or is computed by the 

application, as can be the case for a profit-based utility function. 

 Each element of the user space C can be defined with a profile that includes various user 

characteristics, such as age, gender, income, marital status, etc.  In the simplest case, the profile 

can contain only a single (unique) element, such as User ID.  Similarly, each element of the item 

space S is defined with a set of characteristics.  For example, in a movie recommendation 

application, where S is a collection of movies, each movie can be represented not only by its ID, 

but also by its title, genre, director, year of release, leading actors, etc. 

 The central problem of recommender systems lies in that utility u is usually not defined 

on the whole C S×  space, but only on some subset of it.  This means u needs to be extrapolated 

to the whole space C S× .  In recommender systems, utility is typically represented by ratings 
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and is initially defined only on the items previously rated by the users.  For example, in a movie 

recommendation application (such as the one at MovieLens.org), users initially rate some subset 

of movies that they have already seen.  An example of a user-item rating matrix for a movie 

recommendation application is presented in Table 1, where ratings are specified on the scale of 1 

to 5.  The “∅” symbol for some of the ratings in Table 1 means that the users have not rated the 

corresponding movies.  Therefore, the recommendation engine should be able to estimate 

(predict) the ratings of the non-rated movie/user combinations and issue appropriate 

recommendations based on these predictions. 

 K-PAX Life of Brian Memento Notorious 
Alice 4 3 2 4 
Bob ∅ 4 5 5 

Cindy 2 2 4 ∅ 
David 3 ∅ 5 2 

Table 1.  A fragment of a rating matrix for a movie recommender system. 

Extrapolations from known to unknown ratings are usually done by (a) specifying heuristics that 

define the utility function and empirically validating its performance, and (b) estimating the 

utility function that optimizes certain performance criterion, such as the mean square error. 

 Once the unknown ratings are estimated, actual recommendations of an item to a user are 

made by selecting the highest rating among all the estimated ratings for that user, according to 

formula (1).  Alternatively, we can recommend N best items to a user or a set of users to an item.   

The new ratings of the not-yet-rated items can be estimated in many different ways using 

the methods from machine learning, approximation theory and various heuristics.  Recommender 

systems are usually classified according to their approach to rating estimation, and in the next 

section, we will present such a classification that was proposed in the literature and will provide 

a survey of different types of recommender systems.  The commonly accepted formulation of the 

recommendation problem was first stated in [45, 86, 97] and this problem has been studied 
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extensively since then.  Moreover, recommender systems are usually classified into the following 

categories, based on how recommendations are made [8]: 

• Content-based recommendations: the user is recommended items similar to the ones the 

user preferred in the past; 

• Collaborative recommendations: the user is recommended items that people with similar 

tastes and preferences liked in the past; 

• Hybrid approaches: these methods combine collaborative and content-based methods. 

In addition to recommender systems that predict the absolute values of ratings that individual 

users would give to the yet unseen items (as discussed above), there has been work done on 

preference-based filtering, i.e., predicting the relative preferences of users [22, 35, 51, 52].  For 

example, in a movie recommendation application preference-based filtering techniques would 

focus on predicting the correct relative order of the movies, rather than their individual ratings.  

However, this paper focuses primarily on the rating-based recommenders, since it constitutes the 

most popular approach to recommender systems.  

2.1 Content-based Methods 

In content-based recommendation methods, the utility ( , )u c s  of item s for user c is estimated 

based on the utilities ( , )iu c s  assigned by user c to items is S∈  that are “similar” to item s.  For 

example, in a movie recommendation application, in order to recommend movies to user c, the 

content-based recommender system tries to understand the commonalities among the movies 

user c has rated highly in the past (specific actors, directors, genres, subject matter, etc.).  Then, 

only the movies that have a high degree of similarity to whatever user’s preferences are would 

get recommended. 

The content-based approach to recommendation has its roots in information retrieval [7, 

89] and information filtering [10] research.  Because of the significant and early advancements 

made by the information retrieval and filtering communities and because of the importance of 
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several text-based applications, many current content-based systems focus on recommending 

items containing textual information, such as documents, Web sites (URLs), and Usenet news 

messages.  The improvement over the traditional information retrieval approaches comes from 

the use of user profiles that contain information about users’ tastes, preferences, and needs.  The 

profiling information can be elicited from users explicitly, e.g., through questionnaires, or 

implicitly – learned from their transactional behavior over time.   

More formally, let Content(s) be an item profile, i.e., a set of attributes characterizing 

item s.  It is usually computed by extracting a set of features from item s (its content) and is used 

to determine appropriateness of the item for recommendation purposes.  Since, as mentioned 

earlier, content-based systems are designed mostly to recommend text-based items, the content in 

these systems is usually described with keywords.  For example, a content-based component of 

the Fab system [8], which recommends Web pages to users, represents Web page content with 

the 100 most important words.  Similarly, the Syskill & Webert system [77] represents 

documents with the 128 most informative words.  The “importance” (or “informativeness”) of 

word ki in document dj is determined with some weighting measure wij that can be defined in 

several different ways.   

One of the best-known measures for specifying keyword weights in Information 

Retrieval is the term frequency/inverse document frequency (TF-IDF) measure [89] that is 

defined as follows.  Assume that N is the total number of documents that can be recommended to 

users and that keyword ki appears in ni of them.  Moreover, assume that ,i jf  is the number of 

times keyword ki appears in document dj.  Then ,i jTF , the term frequency (or normalized 

frequency) of keyword ki in document dj, is defined as 
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,
,

,max
i j

i j
z z j

f
TF

f
=      (2) 

where the maximum is computed over the frequencies ,z jf  of all keywords kz that appear in the 

document dj.  However, keywords that appear in many documents are not useful in 

distinguishing between a relevant document and a non-relevant one.  Therefore, the measure of 

inverse document frequency (IDFi) is often used in combination with simple term frequency 

( ,i jTF ). The inverse document frequency for keyword ki is usually defined as 

logi
i

NIDF
n

=       (3) 

Then the TF-IDF weight for keyword ki in document dj is defined as 

, ,i j i j iw TF IDF= ×      (4) 

and the content of document dj is defined as Content(dj) = (w1j, …wkj). 

As stated earlier, content-based systems recommend items similar to those that a user 

liked in the past [56, 69, 77].  In particular, various candidate items are compared with items 

previously rated by the user, and the best-matching item(s) are recommended.  More formally, 

let ContentBasedProfile(c) be the profile of user c containing tastes and preferences of this user.  

These profiles are obtained by analyzing the content of the items previously seen and rated by 

the user and are usually constructed using keyword analysis techniques from information 

retrieval.  For example, ContentBasedProfile(c) can be defined as a vector of weights (wc1, 

…,wck), where each weight wci denotes the importance of keyword ki to user c and can be 

computed from individually rated content vectors using a variety of techniques.  For example, 

some averaging approach, such as Rocchio algorithm [85], can be used to compute 

ContentBasedProfile(c) as an “average” vector from an individual content vectors [8, 56].  On 

the other hand, [77] use a Bayesian classifier in order to estimate the probability that a document 
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is liked.  The Winnow algorithm [62] has also been shown to work well for this purpose, 

especially in the situations where there are many possible features [76].   

In content-based systems, the utility function u(c, s) is usually defined as: 

 ( , ) ( ( ), ( ))u c s score ContentBasedProfile c Content s=  (5) 

Using the above-mentioned information retrieval-based paradigm of recommending Web pages, 

Web site URLs, or Usenet news messages, both ContentBasedProfile(c) of user c and Content(s) 

of document s can be represented as TF-IDF vectors cwG  and swG  of keyword weights.  Moreover, 

utility function u(c, s) is usually represented in information retrieval literature by some scoring 

heuristic defined in terms of vectors cwG  and swG , such as  cosine similarity measure [7, 89]: 

, ,1

2 22 2
, ,1 1

( , ) cos( , )
|| || || ||

K
i c i sc s i

c s K K
c s

i c i si i

w ww wu c s w w
w w w w

=

= =

⋅
= = =

×
∑

∑ ∑

G GG G
G G   (6) 

where K is the total number of keywords in the system.   

For example, if user c reads many online articles on the topic of bioinformatics, then 

content-based recommendation techniques will be able to recommend other bioinformatics 

articles to user c.  This is the case, because these articles will have more bioinformatics-related 

terms (e.g., “genome”, “sequencing”, “proteomics”) than articles on other topics, and, therefore, 

ContentBasedProfile(c), as defined by vector cwG , will represent such terms ki with high weights 

wic.  Consequently, a recommender system using the cosine or a related similarity measure will 

assign higher utility u(c, s) to those articles s that have high-weighted bioinformatics terms in swG  

and lower utility to the ones where bioinformatics terms are weighted less. 

 Besides the traditional heuristics that are based mostly on information retrieval methods, 

other techniques for content-based recommendation have also been used, such as Bayesian 

classifiers [70, 77] and various machine learning techniques, including clustering, decision trees, 
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and artificial neural networks [77].  These techniques differ from information retrieval-based 

approaches in that they calculate utility predictions based not on a heuristic formula, such as a 

cosine similarity measure, but rather are based on a model learned from the underlying data using 

statistical learning and machine learning techniques.  For example, based on a set of Web pages 

that were rated as “relevant” or “irrelevant” by the user, [77] use the naïve Bayesian classifier 

[31] to classify unrated Web pages. More specifically, the naïve Bayesian classifier is used to 

estimate the following probability that page pj belongs to a certain class Ci (e.g., relevant or 

irrelevant) given the set of keywords 1, jk , …, ,n jk  on that page: 

     1, ,( | & & )i j n jP C k k…      (7) 

Moreover, [77] use the assumption that keywords are independent and, therefore, the above 

probability is proportional to  

 ,( ) ( | )i x j i
x

P C P k C∏      (8) 

While the keyword independence assumption does not necessarily apply in many applications, 

experimental results demonstrate that naïve Bayesian classifiers still produce high classification 

accuracy [77].  Furthermore, both ,( | )x j iP k C   and ( )iP C  can be estimated from the underlying 

training data.  Therefore, for each page pj, the probability 1, ,( | & & )i j n jP C k k…  is computed for 

each class Ci, and page pj is assigned to class Ci having the highest probability [77].   

While not explicitly dealing with providing recommendations, the text retrieval 

community has contributed several techniques that are being used in content-based recommender 

systems.  One example of such technique would be the research on adaptive filtering [101, 112], 

which focuses on becoming more accurate at identifying relevant documents incrementally, by 

observing the documents one-by-one in a continuous document stream.  Another example would 

be the work on threshold setting [84, 111], which focuses on determining the extent to which 
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documents should match a given query in order to be relevant to the user.  Other text retrieval 

methods are described in [50] and can also be found in the proceedings of the Text Retrieval 

Conference (TREC) (http://trec.nist.gov).   

As was observed in [8, 97], content-based recommender systems have several limitations 

that are described in the rest of this section. 

Limited content analysis.  Content-based techniques are limited by the features that are 

explicitly associated with the objects that these systems recommend.  Therefore, in order to have 

a sufficient set of features, the content must either be in a form that can be parsed automatically 

by a computer (e.g., text), or the features should be assigned to items manually.  While 

information retrieval techniques work well in extracting features from text documents, some 

other domains have an inherent problem with automatic feature extraction.  For example, 

automatic feature extraction methods are much harder to apply to the multimedia data, e.g., 

graphical images, audio and video streams.  Moreover, it is often not practical to assign attributes 

by hand due to limitations of resources [97].   

Another problem with limited content analysis is that, if two different items are 

represented by the same set of features, they are indistinguishable.  Therefore, since text-based 

documents are usually represented by their most important keywords, content-based systems 

cannot distinguish between a well-written article and a badly written one, if they happen to use 

the same terms [97].  

Over-specialization.  When the system can only recommend items that score highly against a 

user’s profile, the user is limited to being recommended items similar to those already rated.  For 

example, a person with no experience with Greek cuisine would never receive a recommendation 

for even the greatest Greek restaurant in town.  This problem, which has also been studied in 

other domains, is often addressed by introducing some randomness.  For example, the use of 
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genetic algorithms has been proposed as a possible solution in the context of information 

filtering [98].  In addition, the problem with over-specialization is not only that the content-based 

systems cannot recommend items that are different from anything the user has seen before.  In 

certain cases, items should not be recommended if they are too similar to something the user has 

already seen, such as different news article describing the same event.  Therefore, some content-

based recommender systems, such as DailyLearner [13], filter out items not only if they are too 

different from user’s preferences, but also if they are too similar to something the user has seen 

before.  Furthermore, [112] provide a set of five redundancy measures to evaluate whether a 

document that is deemed to be relevant contains some novel information as well.  In summary, 

the diversity of recommendations is often a desirable feature in recommender systems.  Ideally, 

the user should be presented with a range of options and not with a homogeneous set of 

alternatives.  For example, it is not necessarily a good idea to recommend all movies by Woody 

Allen to a user who liked one of them. 

New user problem.  The user has to rate a sufficient number of items before a content-based 

recommender system can really understand user’s preferences and present the user with reliable 

recommendations.  Therefore, a new user, having very few ratings, would not be able to get 

accurate recommendations.  

2.2 Collaborative Methods 

Unlike content-based recommendation methods, collaborative recommender systems (or 

collaborative filtering systems) try to predict the utility of items for a particular user based on the 

items previously rated by other users.  More formally, the utility u(c, s) of item s for user c is 

estimated based on the utilities u(cj, s) assigned to item s by those users cj∈C who are “similar” 

to user c.  For example, in a movie recommendation application, in order to recommend movies 

to user c, the collaborative recommender system tries to find the “peers” of user c, i.e., other 
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users that have similar tastes in movies (rate the same movies similarly).  Then, only the movies 

that are most liked by the “peers” of user c would get recommended. 

There have been many collaborative systems developed in the academia and the industry.  

It can be argued that the Grundy system [87] was the first recommender system, which proposed 

to use stereotypes as a mechanism for building models of users based on a limited amount of 

information on each individual user.  Using stereotypes, the Grundy system would build 

individual user models and use them to recommend relevant books to each user.  Later on, the 

Tapestry system relied on each user to identify like-minded users manually [38].  GroupLens 

[53, 86], Video Recommender [45], and Ringo [97] were the first systems to use collaborative 

filtering algorithms to automate prediction.  Other examples of collaborative recommender 

systems include the book recommendation system from Amazon.com, the PHOAKS system that 

helps people find relevant information on the WWW [103], and the Jester system that 

recommends jokes [39].   

According to [15], algorithms for collaborative recommendations can be grouped into 

two general classes: memory-based (or heuristic-based) and model-based.   

Memory-based algorithms [15, 27, 72, 86, 97] essentially are heuristics that make rating 

predictions based on the entire collection of previously rated items by the users.  That is, the 

value of the unknown rating rc,s for user c and item s is usually computed as an aggregate of the 

ratings of some other (usually the N most similar) users for the same item s: 

 , ,
ˆ

aggrc s c s
c C

r r ′
′∈

=  (9) 

where Ĉ  denotes the set of N users that are the most similar to user c and who have rated item s 

(N can range anywhere from 1 to the number of all users).  Some examples of the aggregation 

function are:   
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, , , , , ,
ˆ ˆ ˆ

1(a)    (b) ( , )    (c) ( , ) ( )c s c s c s c s c s c c s c
c C c C c C

r r r k sim c c r r r k sim c c r r
N ′ ′ ′ ′

′ ′ ′∈ ∈ ∈

′ ′= = × = + × −∑ ∑ ∑  (10) 

where multiplier k serves as a normalizing factor and is usually selected as 

ˆ1 | ( , ) |
c C

k sim c c
′∈

′= ∑ , and where the average rating of user c, cr , in (10c) is defined as 

( ) ,1 | |
c

c c c ss S
r S r

∈
= ∑ , where ,{ | }c c sS s S r= ∈ ≠ ∅ 3.   (11) 

In the simplest case, the aggregation can be a simple average, as defined by expression (10a).  

However, the most common aggregation approach is to use the weighted sum, shown in (10b).  

The similarity measure between the users c and c’, sim(c, c’), is essentially a distance measure 

and is used as a weight, i.e., the more similar users c and c’ are, the more weight rating rc’,s will 

carry in the prediction of rc,s.  Note that sim(x,y) is a heuristic artifact that is introduced in order 

to be able to differentiate between levels of user similarity (i.e., to be able to find a set of “closest 

peers” or “nearest neighbors” for each user) and at the same time simplify the rating estimation 

procedure.  As shown in (10b), different recommendation applications can use their own user 

similarity measure, as long as the calculations are normalized using the normalizing factor k, as 

shown above.  The two most commonly used similarity measures will be described below.  One 

problem with using the weighted sum, as in (10b), is that it does not take into account the fact 

that different users may use the rating scale differently.  The adjusted weighted sum, shown in 

(10c), has been widely used to address this limitation.  In this approach, instead of using the 

absolute values of ratings, the weighted sum uses their deviations from the average rating of the 

corresponding user.  Another way to overcome the differing uses of the rating scale is to deploy 

preference-based filtering [22, 35, 51, 52], which focuses on predicting the relative preferences 

of users instead of absolute rating values, as was pointed out earlier in Section 2. 

                                                 
3  We use the ,c sr =∅  notation to indicate that item s has not been rated by user c. 
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Various approaches have been used to compute the similarity ( , )sim c c′  between users in 

collaborative recommender systems.  In most of these approaches, the similarity between two 

users is based on their ratings of items that both users have rated.  The two most popular 

approaches are correlation- and cosine-based.  To present them, let Sxy be the set of all items co-

rated by both users x and y, i.e., , ,{ |  &  }xy x s y sS s S r r= ∈ ≠ ∅ ≠∅ .  In collaborative 

recommender systems Sxy is used mainly as an intermediate result for calculating the “nearest 

neighbors” of user x and is often computed in a straightforward manner, i.e., by computing the 

intersection of sets Sx and Sy.  However, some methods, such as the graph-theoretic approach to 

collaborative filtering [4], can determine the nearest neighbors of x without computing Sxy for all 

users y.  In the correlation-based approach, the Pearson correlation coefficient is used to measure 

the similarity [86, 97]: 

 
, ,

2 2
, ,

( )( )
( , )

( )   ( )
xy

xy xy

x s x y s y
s S

x s x y s y
s S s S

r r r r
sim x y

r r r r
∈

∈ ∈

− −

=
− −

∑

∑ ∑
 (12) 

In the cosine-based approach [15, 91], the two users x and y are treated as two vectors in 

m-dimensional space, where | |xym S= .  Then, the similarity between two vectors can be 

measured by computing the cosine of the angle between them:   

 
, ,

2 2
2 2 , ,

( , ) cos( , )
|| || || ||

xy

xy xy

x s y s
s S

x s y s
s S s S

r r
x ysim x y x y

x y r r
∈

∈ ∈

⋅
= = =

×

∑

∑ ∑

G GG G
G G  (13) 

where x y⋅G G  denotes the dot-product between the vectors xG  and yG .  Still another approach to 

measuring similarity between users uses the mean squared difference measure and is described 

in [97].  Note that different recommender systems may take different approaches in order to 

implement the user similarity calculations and rating estimations as efficiently as possible.  One 
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common strategy is to calculate all user similarities sim(x, y) (including the calculation of Sxy) in 

advance and recalculate them only once in a while (since the network of peers usually does not 

change dramatically in a short time).  Then, whenever the user asks for a recommendation, the 

ratings can be efficiently calculated on demand using pre-computed similarities.   

Note, that both the content-based and the collaborative approaches use the same cosine 

measure from information retrieval literature.  However, in content-based recommender systems 

it is used to measure the similarity between vectors of TF-IDF weights, whereas in collaborative 

systems it measures the similarity between vectors of the actual user-specified ratings. 

Many performance-improving modifications, such as default voting, inverse user 

frequency, case amplification [15], and weighted-majority prediction [27, 72], have been 

proposed as extensions to these standard correlation-based and cosine-based techniques.  For 

example, the default voting [15] is an extension to the memory-based approaches described 

above.  It was observed that whenever there are relatively few user-specified ratings, these 

methods would not work well in computing similarity between users x and y since the similarity 

measure is based on the intersection of the itemsets, i.e., sets of items rated by both users x and y.  

It was empirically shown that the rating prediction accuracy could improve if we assume some 

default rating value for the missing ratings [15].   

Also, while the above techniques traditionally have been used to compute similarities 

between users, [91] proposed to use the same correlation-based and cosine-based techniques to 

compute similarities between items instead and obtain the ratings from them.  This idea has been 

further extended in [29] for top-N item recommendations.  In addition, [29, 91] present empirical 

evidence that item-based algorithms can provide better computational performance than 

traditional user-based collaborative methods, while at the same time providing comparable or 

better quality than the best available user-based algorithms.     
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In contrast to memory-based methods, model-based algorithms [11, 15, 37, 39, 47, 64, 

75, 105] use the collection of ratings to learn a model, which is then used to make rating 

predictions.  For example, [15] proposes a probabilistic approach to collaborative filtering, where 

the unknown ratings are calculated as  

 , , , ,
0

( ) Pr( | , )
n

c s c s c s c s c
i

r E r i r i r s S′
=

′= = × = ∈∑  (14) 

and it is assumed that rating values are integers between 0 and n, and the probability expression 

is the probability that user c will give a particular rating to item s given that user’s ratings of the 

previously rated items.  To estimate this probability, [15] proposes two alternative probabilistic 

models: cluster models and Bayesian networks.  In the first model, like-minded users are 

clustered into classes.  Given the user’s class membership, the user ratings are assumed to be 

independent, i.e., the model structure is that of a naïve Bayesian model.  The number of classes 

and the parameters of the model are learned from the data.  The second model represents each 

item in the domain as a node in a Bayesian network, where the states of each node correspond to 

the possible rating values for each item.  Both the structure of the network and the conditional 

probabilities are learned from the data.  One limitation of this approach is that each user can be 

clustered into a single cluster, whereas some recommendation applications may benefit from the 

ability to cluster users into several categories at once.  For example, in a book recommendation 

application, a user may be interested in one topic (e.g., programming) for work purposes and a 

completely different topic (e.g., fishing) for leisure. 

Moreover, [11] proposed a collaborative filtering method in a machine learning 

framework, where various machine learning techniques (such as artificial neural networks) 

coupled with feature extraction techniques (such as singular value decomposition – an algebraic 

technique for reducing dimensionality of matrices) can be used.  Both [15] and [11] compare 
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their respective model-based approaches with standard memory-based approaches and report that 

in some applications model-based methods outperform memory-based approaches in terms of 

accuracy of recommendations.  However, the comparison in both cases is purely empirical and 

no underlying theoretical evidence supporting this claim is provided.   

There have been several other model-based collaborative recommendation approaches 

proposed in the literature.  A statistical model for collaborative filtering was proposed in [105], 

and several different algorithms for estimating the model parameters were compared, including 

K-means clustering and Gibbs sampling.  Other collaborative filtering methods include a 

Bayesian model [20], a probabilistic relational model [37], a linear regression [91], and a 

maximum entropy model [75].  More recently, a significant amount of research has been done in 

trying to model the recommendation process using more complex probabilistic models.  For 

instance, [96] view the recommendation process as a sequential decision problem and propose to 

use Markov decision processes (a well known stochastic technique for modeling sequential 

decisions) for generating recommendations.  Other probabilistic modeling techniques for 

recommender systems include probabilistic latent semantic analysis [47, 48] and a combination 

of multinomial mixture and aspect models using generative semantics of Latent Dirichlet 

Allocation [64].  Similarly, [99] also use probabilistic latent semantic analysis to propose a 

flexible mixture model that allows modeling the classes of users and items explicitly with two 

sets of latent variables.  Furthermore, [55] use a simple probabilistic model to demonstrate that 

collaborative filtering is valuable with relatively little data on each user, and that, in certain 

restricted settings, simple collaborative filtering algorithms are almost as effective as the best 

possible algorithms in terms of utility. 

As in the case of content-based techniques, the main difference between collaborative 

model-based techniques and heuristic-based approaches is that the model-based techniques 
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calculate utility (rating) predictions based not on some ad-hoc heuristic rules, but rather based on 

a model learned from the underlying data using statistical and machine learning techniques.  A 

method combining both memory-based and model-based approaches was proposed in [79], 

where it was empirically demonstrated that the use of this combined approach can provide better 

recommendations than pure memory-based and model-based collaborative approaches.   

A different approach to improving the performance of existing collaborative filtering 

algorithms was taken in [108], where the input set of user-specified ratings is carefully selected 

using several techniques that exclude noise, redundancy, and exploit the sparsity of the ratings’ 

data.  The empirical results demonstrate the increase in accuracy and efficiency for model-based 

collaborative filtering algorithms.  It is also suggested that the proposed input selection 

techniques may help the model-based algorithms to address the problem of learning from large 

databases [108].  Furthermore, among the latest developments, [109] propose a probabilistic 

approach to collaborative filtering that constitutes yet another way to combine the memory-based 

and model-based techniques.  In particular, [109] propose (a) to use an active learning approach 

to learn the probabilistic model of each user’s preferences and (b) to use the stored user profiles 

in a mixture model to calculate recommendations.  The latter aspect of the proposed approach 

deploys some of the ideas used in the traditional memory-based algorithms. 

The pure collaborative recommender systems do not have some of the shortcomings that 

content-based systems have.  In particular, since collaborative systems use other users’ 

recommendations (ratings), they can deal with any kind of content and recommend any items, 

even the ones that are dissimilar to those seen in the past.  However, collaborative systems have 

their own limitations [8, 57], as described below. 

New user problem.  It is the same problem as with content-based systems.  In order to make 

accurate recommendations, the system must first learn the user’s preferences from the ratings 
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that the user makes.  Several techniques have been proposed to address this problem.  Most of 

them use hybrid recommendation approach, which combines content-based and collaborative 

techniques.  The next section describes hybrid recommender systems in more detail.  An 

alternative approach is presented in [83, 109], where various techniques are explored for 

determining the best (i.e., most informative to a recommender system) items for a new user to 

rate.  These techniques use strategies that are based on item popularity, item entropy, user 

personalization, and combinations of the above [83, 109]. 

New item problem.  New items are added regularly to recommender systems.  Collaborative 

systems rely solely on users’ preferences to make recommendations. Therefore, until the new 

item is rated by a substantial number of users, the recommender system would not be able to 

recommend it.  This problem can also be addressed using hybrid recommendation approaches, 

described in the next section. 

Sparsity.  In any recommender system, the number of ratings already obtained is usually very 

small compared to the number of ratings that need to be predicted.  Effective prediction of 

ratings from a small number of examples is important.  Also, the success of the collaborative 

recommender system depends on the availability of a critical mass of users.  For example, in the 

movie recommendation system there may be many movies that have been rated only by few 

people and these movies would be recommended very rarely, even if those few users gave high 

ratings to them.  Also, for the user whose tastes are unusual compared to the rest of the 

population there will not be any other users who are particularly similar, leading to poor 

recommendations [8].  One way to overcome the problem of rating sparsity is to use user profile 

information when calculating user similarity.  That is, two users could be considered similar not 

only if they rated the same movies similarly, but also if they belong to the same demographic 

segment.  For example, [76] uses gender, age, area code, education, and employment information 
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of users in the restaurant recommendation application.  This extension of traditional 

collaborative filtering techniques is sometimes called “demographic filtering” [76].  Another 

approach that also explores similarities among users has been proposed in [49], where the 

sparsity problem is addressed by applying associative retrieval framework and related spreading 

activation algorithms to explore transitive associations among consumers through their past 

transactions and feedback.  A different approach for dealing with sparse rating matrices was used 

in [11, 90], where a dimensionality reduction technique, Singular Value Decomposition (SVD), 

was used to reduce dimensionality of sparse ratings matrices.  SVD is a well-known method for 

matrix factorization that provides the best lower rank approximations of the original matrix [90].   

2.3. Hybrid Methods 

Several recommendation systems use a hybrid approach by combining collaborative and content-

based methods, which helps to avoid certain limitations of content-based and collaborative 

systems [8, 9, 21, 76, 94, 100, 105].  Different ways to combine collaborative and content-based 

methods into a hybrid recommender system can be classified as follows: (1) implementing 

collaborative and content-based methods separately and combining their predictions, (2) 

incorporating some content-based characteristics into a collaborative approach, (3) incorporating 

some collaborative characteristics into a content-based approach, and (4) constructing a general 

unifying model that incorporates both content-based and collaborative characteristics.  All of the 

above approaches have been used by recommender systems researchers, as described below. 

1. Combining separate recommenders.  One way to build hybrid recommender systems is 

to implement separate collaborative and content-based systems.  Then we can have two different 

scenarios.  First, we can combine the outputs (ratings) obtained from individual recommender 

systems into one final recommendation using either a linear combination of ratings [21] or a 

voting scheme [76].  Alternatively, we can use one of the individual recommenders, at any given 
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moment choosing to use the one that is “better” than others based on some recommendation 

“quality” metric.  For example, the DailyLearner system [13] selects the recommender system 

that can give the recommendation with the higher level of confidence, while [104] chooses the 

one whose recommendation is more consistent with past ratings of the user.   

2. Adding content-based characteristics to collaborative models.  Several hybrid 

recommender systems, including Fab [8] and the “collaboration via content” approach, described 

in [76], are based on traditional collaborative techniques but also maintain the content-based 

profiles for each user.  These content-based profiles, and not the commonly rated items, are then 

used to calculate the similarity between two users.  As mentioned in [76], this allows to 

overcome some sparsity-related problems of a purely collaborative approach, since typically not 

many pairs of users will have a significant number of commonly rated items.  Another benefit of 

this approach is that users can be recommended an item not only when this item is rated highly 

by users with similar profiles, but also directly, i.e., when this item scores highly against the 

user’s profile [8].  [40] employs a somewhat similar approach in using the variety of different 

filterbots – specialized content-analysis agents that act as additional participants in a 

collaborative filtering community.  As a result, the users whose ratings agree with some of the 

filterbots’ ratings would be able to receive better recommendations [40].  Similarly, [65] uses a 

collaborative approach where the traditional user’s ratings vector is augmented with additional 

ratings, which are calculated using a pure content-based predictor.  

3. Adding collaborative characteristics to content-based models.  The most popular 

approach in this category is to use some dimensionality reduction technique on a group of 

content-based profiles. For example, [100] use latent semantic indexing (LSI) to create a 

collaborative view of a collection of user profiles, where user profiles are represented by term 

vectors (as discussed in Section 2.1), resulting in a performance improvement compared to the 
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pure content-based approach.  

4. Developing a single unifying recommendation model.  Many researchers have followed 

this approach in recent years.  For instance, [9] propose to use content-based and collaborative 

characteristics (e.g., the age or gender of users or the genre of movies) in a single rule-based 

classifier.  [80] and [94] propose a unified probabilistic method for combining collaborative and 

content-based recommendations, which is based on the probabilistic latent semantic analysis 

[46].  Yet another approach is proposed by [25] and [5], where Bayesian mixed-effects 

regression models are used that employ Markov chain Monte Carlo methods for parameter 

estimation and prediction.  In particular, [5] uses the profile information of users and items in a 

single statistical model that estimates unknown ratings ijr  for user i and item j:  

 2
 ,     (0, ),     (0, ),     (0, ).ij ij i j j i ij ij i jr x z w e e N N Nµ γ λ σ λ γ= + + + ∼ ∼ Λ ∼ Γ  (15) 

where 1, ,i I= …  and 1, ,j J= …  represent users and items respectively, and ije , iλ , and jγ  are 

random variables taking into effect noise, unobserved sources of user heterogeneity and item 

heterogeneity respectively.  Also, xij is a matrix containing user and item characteristics, zi is a 

vector of user characteristics, and wj is a vector of item characteristics.  The unknown parameters 

of this model are µ , 2σ , Λ , and Γ , and they are estimated from the data of already known 

ratings using Markov chain Monte Carlo methods.  In summary, [5] uses user attributes {zi} 

constituting a part of a user profile, item attributes {wj} constituting a part of an item profile and 

their interactions {xij} to estimate the rating of an item. 

Hybrid recommendation systems can also be augmented by knowledge-based techniques 

[17], such as case-based reasoning, in order to improve recommendation accuracy and to address 

some of the limitations (e.g., new user, new item problems) of traditional recommender systems.  

For example, knowledge-based recommender system Entrée [17] uses some domain knowledge 
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about restaurants, cuisines, and foods (e.g., that “seafood” is not “vegetarian”) to recommend 

restaurants to its users.  The main drawback of knowledge-based systems is a need for 

knowledge acquisition – a well-known bottleneck for many artificial intelligence applications.  

However, knowledge-based recommendation systems have been developed for application 

domains where domain knowledge is readily available in some structured machine-readable 

form, e.g., as an ontology.  For example, Quickstep and Foxtrot systems [66] use research paper 

topic ontology to recommend online research articles to the users. 

Moreover, several papers, such as [8, 65, 76, 100], empirically compare the performance 

of the hybrid with the pure collaborative and content-based methods and demonstrate that the 

hybrid methods can provide more accurate recommendations than pure approaches.   

2.4. Summary and Conclusions 

As described in Sections 2.1-2.3, there has been much research done on recommendation 

technologies over the past several years that have used a broad range of statistical, machine 

learning, information retrieval and other techniques and that significantly advanced the state-of-

art in comparison to early recommender systems that utilized collaborative- and content-based 

heuristics.  As was discussed above, recommender systems can be categorized as being (a) 

content-based, collaborative, or hybrid, based on the recommendation approach used, and (b) 

heuristic-based or model-based based on the types of recommendation techniques used for the 

rating estimation.  We use these two orthogonal dimensions to classify the recommender systems 

research in the 2×3 matrix presented in Table 2.   

The recommendation methods described in this section have performed well in several 

applications, including the ones for recommending books, CDs, and news articles [64, 88], and 

some of these methods are used in the “industrial-strength” recommender systems, such as the 

ones deployed at Amazon [61], MovieLens [67], and VERSIFI Technologies (formerly 
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AdapiveInfo.com) [14].  However, both collaborative and content-based methods have certain 

limitations described earlier in this section.  Moreover, in order to provide better 

recommendations and to be able to use recommender systems in arguably more complex types of 

applications, such as recommending vacations or certain types of financial services, most of the 

methods reviewed in this section would need significant extensions.  For example, even for a 

traditional movie recommendation application, [3] showed that, by extending the traditional 

memory-based collaborative filtering approach to take into the consideration the contextual 

information, such as when, where and with whom a movie is seen, the resulting recommender 

system could outperform the pure traditional collaborative filtering method.  Many real-life 

recommendation applications, including several business applications, such as the ones described 

above, are arguably more complex than a movie recommender system, and would require taking 

more factors into the recommendation consideration.  Therefore, the need to develop more 

advanced recommendation methods is even more pressing for such types of applications.  In the 

next section, we review various ways to extend recommendation methods in order to support 

more complex types of recommendation applications. 

3.  Extending Capabilities of Recommender Systems 

Recommender systems, as described in Section 2 and summarized in Table 2, can be extended in 

several ways that include improving the understanding of users and items, incorporating the 

contextual information into the recommendation process, supporting multi-criteria ratings, and 

providing more flexible and less intrusive types of recommendations.  Such more comprehensive 

models of recommender systems can provide better recommendation capabilities.  In the 

remainder of this section we describe the proposed extensions and also identify various research 

opportunities for developing them. 
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Recommendation Technique Recommendation 
Approach Heuristic-based Model-based 

Content-based Commonly used techniques: 
• TF-IDF (information retrieval)  
• Clustering 

Representative research examples: 
• Lang 1995 
• Balabanovic & Shoham 1997 
• Pazzani & Billsus 1997 

Commonly used techniques: 
• Bayesian classifiers 
• Clustering 
• Decision trees 
• Artificial neural networks 

Representative research examples: 
• Pazzani & Billsus 1997 
• Mooney et al. 1998 
• Mooney & Roy 1999 
• Billsus & Pazzani 1999, 2000 
• Zhang et al. 2002 

Collaborative Commonly used techniques: 
• Nearest neighbor (cosine, correlation) 
• Clustering 
• Graph theory 

Representative research examples: 
• Resnick et al. 1994 
• Hill et al. 1995 
• Shardanand & Maes 1995 
• Breese et al. 1998 
• Nakamura & Abe 1998 
• Aggarwal et al. 1999 
• Delgado & Ishii 1999 
• Pennock & Horwitz 1999 
• Sarwar et al. 2001 

Commonly used techniques: 
• Bayesian networks 
• Clustering 
• Artificial neural networks 
• Linear regression 
• Probablistic models 

Representative research examples: 
• Billsus & Pazzani 1998 
• Breese et al. 1998 
• Ungar & Foster 1998 
• Chien & George 1999 
• Getoor & Sahami 1999 
• Pennock & Horwitz 1999 
• Goldberg et al. 2001 
• Kumar et al. 2001 
• Pavlov & Pennock 2002 
• Shani et al. 2002 
• Yu et al. 2002, 2004 
• Hofmann 2003, 2004 
• Marlin 2003 
• Si & Jin 2003 

Hybrid Combining content-based and collaborative 
components using: 

• Linear combination of predicted ratings 
• Various voting schemes 
• Incorporating one component as a part of 

the heuristic for the other 
Representative research examples: 

• Balabanovic & Shoham 1997 
• Claypool et al. 1999 
• Good et al. 1999 
• Pazzani 1999 
• Billsus & Pazzani 2000 
• Tran & Cohen 2000 
• Melville et al. 2002 

Combining content-based and collaborative 
components by: 

• Incorporating one component as a 
part of the model for the other 

• Building one unifying model 
Representative research examples: 

• Basu et al. 1998 
• Condliff et al. 1999 
• Soboroff & Nicholas 1999 
• Ansari et al. 2000 
• Popescul et al. 2001 
• Schein et al. 2002 

Table 2: Classification of recommender systems research. 

3.1.  Comprehensive understanding of users and items 

As was pointed out in [2, 8, 54, 105], most of the recommendation methods produce ratings that 

are based on a limited understanding of users and items as captured by user and item profiles and 

do not take full advantage of the information in the user's transactional histories and other 
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available data.  For example, classical collaborative filtering methods [45, 86, 97] do not use user 

and item profiles at all for the recommendation purposes and rely exclusively on the ratings 

information to make recommendations.  Although there has been some progress made on 

incorporating user and item profiles into some of the methods since the earlier days of 

recommender systems [13, 76, 79], still these profiles tend to be quite simple and do not utilize 

some of the more advanced profiling techniques.  In addition to using traditional profile features, 

such as keywords and simple user demographics [69, 77], more advanced profiling techniques 

based on data mining rules [1, 34], sequences [63], and signatures [26] that describe user’s 

interests can be used to build user profiles.  Also, in addition to using the traditional item profile 

features, such as keywords [9, 76], similar advanced profiling techniques can also be used to 

build comprehensive item profiles.  With respect to recommender systems, advanced profiling 

techniques that are based on data mining have been used mainly in the context of Web usage 

analysis [59, 68, 110], i.e., to discover navigational Web usage patterns (i.e., page view 

sequences) of users in order to provide better Web site recommendations; however, such 

techniques have not been widely adopted in rating-based recommender systems.   

Once user and item profiles are built, the most general ratings estimation function can be 

defined in terms of these profiles and the previously specified ratings as follows.  Let profile of 

user i be defined as a vector of p features, i.e., 1( , , )i i ipc a a=
G … .  Also, let profile of item j be 

defined as a vector of r features, i.e., 1( , , )j j jrs b b=
G … . We deliberately did not define precisely 

the meanings of features aij and bkl because they can mean different concepts in different 

applications, such as numbers, categories, rules, sequences, etc.  Also, let cG  be a vector of all 

user profiles, i.e., 1( , , )mc c c=
G G G… , and let sG  be a vector of all item profiles, i.e., 1( , , )ns s s=

G G G… .  

Then the most general rating estimation procedure can be defined as 
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,               if   
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G G      (16) 

that estimates each unknown rating ' ( , , )ij ijr u R c s=
G G in terms of known ratings R={ ijr ≠ ∅ }, user 

profiles cG , and item profiles sG .  We can use various methods for estimating utility function iju , 

including various heuristics, nearest neighbor classifiers, decision trees, spline methods, radial 

basis functions, regressions, and neural networks.  Moreover, we would like to point out that 

equation (16) presents the most general model that depends on a whole range of inputs, including 

the characteristics of user i ( icG ) and possibly other users 1( , , )mc c c=
G G G… , characteristics of item j 

( jsG ), and possibly other items 1( , , )ns s s=
G G G… , ratings (preferences) Ri expressed by user i and 

ratings (preferences) expressed by all other users R={rij ≠ ∅}.  Therefore, function uij clearly 

subsumes collaborative, content-based and hybrid methods discussed in Section 2.  However, 

most of the existing recommender systems make function uij dependent only on a (small) subset 

of the whole input space R, cG , and sG .  For example, function uij for traditional memory-based 

collaborative filtering methods does not depend on inputs cG  and sG  and restricts R only to 

column Rj and usually only to the set of N nearest neighbors rij for column Rj.4   

 An interesting research problem would be to extend the attribute-based profiles, as 

defined by cG  and sG , to utilize more advanced profiling techniques described above, such as 

rule-, sequence-, and signature-based methods.  

3.2.  Extensions for Model-Based Recommendation Techniques 

As discussed in Section 2, some of the model-based approaches provide rigorous rating 

estimation methods utilizing various statistical and machine learning techniques.  However, other 

areas of mathematics and computer science, such as mathematical approximation theory [16, 73, 

                                                 
4 Actually, the situation is a little more complicated than this because estimation of nearest neighbors may involve 
other values of matrix R for some of the collaborative filtering methods. 
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81], can also contribute to developing better rating estimation methods defined by equation (16).  

One example of an approximation-based approach to defining function uij in (16) constitutes 

radial basis functions [16, 30, 92] that are defined as follows.  Given a set of points 

1{ , , }mX x x= …  (where N
ix ∈\ ) and the values of an unknown function f (e.g., the rating 

function) at these points, i.e., 1( )f x , …, ( )mf x , a radial basis function ,f Xr  estimates the values 

of f in the whole N\ , given , ( ) ( )f X i ir x f x=  for all 1, ,i m= … , as 

, 1
( ) ( )m

f X i ii
r x x xα φ

=
= −∑      (17) 

where 1{ , , }mα α…  are coefficients from \ , x  is a norm (e.g., L2) and φ  is a positive definite 

function, i.e., a function satisfying the condition 

1 1
( ) 0m m

i j i ji j
x xα α φ

= =
− >∑ ∑     (18) 

for all distinct points 1x , …, mx  in N\  and all the coefficients 1α , …, mα  from \ .  Then a well-

known theorem [92] states that if φ  is a positive definite function then there exists a unique 

function ,f Xr  of the form (17) satisfying the conditions , ( ) ( )f X i ir x f x=  for all 1, ,i m= … . Some 

popular examples of positive definite functions φ  are: 

1. ( )r r βφ = , where 0β >  is a positive odd number; 
2. ( ) log( )kr r rφ = , where k ∈`  (thin-plate splines); 

3. 
2

( ) rr e αφ −=  where 0α >  (Gaussian). 

One of the advantages of radial basis functions is that they have been extensively studied in 

the approximation theory, and their theoretical properties and utilization of radial basis functions 

in many practical applications have been understood very well [16, 92].  Therefore, it should be 

interesting to apply them for estimating unknown ratings in recommender systems. 

One caveat with using radial basis functions in recommender systems, though, is that the 
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recommendation space c s×G G  does not usually constitute an N-dimensional Euclidean space N\ .  

Therefore, one research challenge is to extend radial basis methods from the real numbers to 

other domains and apply them to recommender systems problems.  The applicability of other 

approximation methods for estimating iju  in (16) constitutes another interesting research topic. 

3.3.  Multidimensionality of recommendations 

Current generation of recommender systems operates in the two-dimensional User×Item space.  

That is, they make their recommendations based only on the user and item information and do 

not take into the consideration additional contextual information that may be crucial in some 

applications.  However, in many situations the utility of a certain product to a user may depend 

significantly on time (e.g., the time of the year, such as season or month, or the day of the week).  

It may also depend on the person(s) with whom the product will be consumed or shared and 

under which circumstances.  In such situations it may not be sufficient to simply recommend 

items to users; the recommender system must take additional contextual information, such as 

time, place, and the company of a user, into the consideration when recommending a product.  

For example, when recommending a vacation package, the system should also consider the time 

of the year, with whom the user plans to travel, traveling conditions and restrictions at that time, 

and other contextual information.  As another example, a user can have significantly different 

preferences for the types of movies she wants to see when she is going out to a movie theater 

with a boyfriend on a Saturday night as opposed to watching a rental movie at home with her 

parents on a Wednesday evening.  As was argued in [2], it is important to extend traditional two-

dimensional User×Item recommendation methods to multi-dimensional settings.  In addition, 

[43] argued that the inclusion of the knowledge about user’s task into the recommendation 

algorithm in certain applications can lead to better recommendations.   
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In order to take into the consideration the contextual information, [2] propose to define 

the utility (or ratings) function over a multidimensional space 1 nD D× ×…  (as opposed to the 

traditional 2-dimensional User×Item space) as  

 1: nu D D R× × →…  (19) 

Then a recommendation problem is defined by selecting certain “what” dimensions 1, ,i ikD D…  

( k n< ) and certain “for whom” dimensions 1, ,j jlD D…  ( l n< ) that do not overlap, i.e., 

1 1{ , , } { , , }i ik j jlD D D D =∅… ∩ … , and recommending for each tuple 1 1( , , )j jl j jld d D D∈ × ×… …  

the tuple 1 1( , , )i ik i ikd d D D∈ × ×… …  that maximizes the utility 1( , , )nu d d… , i.e., 

 
1 1
1 1

1 1 1 1
( , , )
( , , ) ( , , )

( , , ) ,       ( , , ) arg max ( , , )
i ik i ik
j jl j jl

j jl j jl i ik n
d d D D
d d d d

d d D D d d u d d
′ ′ ∈ × ×
′ ′ =

′ ′∀ ∈ × × =
… …
… …

… … … …  (20) 

For example, in the case of a movie recommender system one needs to consider not only 

characteristics of the movie d1 and of the person who wants to see the movie d2, but also such 

contextual information as (a) d3: where and how the movie will be seen (e.g., in the movie 

theater, at home on TV, on video or DVD), (b) d4: with whom the movie will be seen (e.g., 

alone, with girlfriend/boyfriend, friends, parents, etc.), and (c) d5: when will the movie be seen 

(e.g., on weekdays or weekends, in the morning/afternoon/evening, during the opening night, 

etc.). As discussed earlier, each of the components d1, d2, d3, d4, d5 can be defined as a vector of 

its characteristics, and the overall utility function u(d1, d2, d3, d4, d5) can be quite complex and 

take into consideration various interaction effects among vectors d1, d2, d3, d4, d5.   

As was argued in [2, 3], many of the two-dimensional recommendation algorithms cannot 

be directly extended to the multidimensional case.  Furthermore, [3] proposes a reduction-based 

recommendation approach which uses only the ratings that pertain to the context of the user-

specified criteria in which a recommendation is made.  For example, to recommend a movie to a 
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person who wants to see it in a movie theater on a Saturday night, the reduction-based approach 

would use only the available ratings of the movies seen in the movie theaters over the weekends, 

if it is determined from the data that the place and the time of the week dimensions affect the 

moviegoers’ behavior.  By selecting only the ratings relevant to a recommendation context, the 

reduction-based approach projects the multi-dimensional cube of ratings on the two primary 

User and Item dimensions.  Then any standard two-dimensional recommendation method 

described in Section 2 can be used to produce a recommendation.  Since these recommendations 

are based only on the context-specific set of ratings, this amounts to building a local model 

producing context-specific recommendations. 

Another possible approach to producing multi-dimensional recommendations would be to 

deploy the hierarchical Bayesian method presented in [5], which can be extended from 2- to 

multi-dimensional case as follows.  Instead of considering the two-dimensional case, as defined 

in (15), where user characteristics d1 are defined with vector zi  and item characteristics d2 with 

vector wj, we can also add contextual dimensions  d3, …, dn, where 1( , , )
ii i ixd d d= …  is a vector 

of characteristics for dimension Di.  Then the rating function r = u(d1, d2, …, dn) is extended 

from (15) to the linear combination of d1, d2, …, dn and also includes interaction effects among 

these dimensions (i.e., interaction effects, as defined by matrix { ijx } in (15), should be extended 

to include other dimensions).  One of the research challenges is to make these extensions 

scalable for large values of n.   

3.4.  Multi-criteria ratings 

Most of the current recommender systems deal with single-criterion ratings, such as ratings of 

movies and books.  However, in some applications, such as restaurant recommenders, it is 

crucial to incorporate multi-criteria ratings into recommendation methods.  For example, many 
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restaurant guides, such as Zagat’s Guide, provide three criteria for restaurant ratings: food, decor 

and service.  Although multi-criteria ratings have not yet been examined in the recommender 

systems literature, they have been extensively studied in the Operations Research community 

[33, 102].  Typical solutions to the multi-criteria optimization problems include (a) finding 

Pareto optimal solutions, (b) taking a linear combination of multiple criteria and reducing the 

problem to a single-criterion optimization problem, (c) optimizing the most important criterion 

and converting other criteria to constraints, (d) consecutively optimizing one criterion at a time, 

converting an optimal solution to constraint(s) and repeating the process for other criteria.  An 

example of the latter approach is the method of successive concessions [102].   

To illustrate how some of these methods can be used in recommender systems, consider 

the application of approach (c) to the problem of recommending restaurants r to user c based on 

the user’s criteria of food quality ( )cf r , décor ( )cd r , and service ( )cs r .  We can take food 

quality ( )cf r  to be the primary criterion and use others as constraints, i.e., we want to find 

restaurants r that maximize ( )cf r , subject to the constraints ( )c cd r α>  and ( )c cs r β> , where cα  

and cβ  are minimal ratings for décor and service (e.g., user c will not go to any restaurant having 

décor and service ratings below 10, out of possible 30, regardless of the quality of food there).  

This problem is complicated by the fact that we usually will not have the user’s decor ( )cd r  and 

service ( )cs r  ratings for all the restaurants.  Then the task of a recommender system is to 

estimate unknown ratings ( )cd r′  and ( )cs r′ , e.g., using the rating estimation methods described in 

Section 2, and find all the restaurants r satisfying constraints ( )c cd r α′ >  and ( )c cs r β′ > .  Once 

we find all the restaurants satisfying the constraints with these estimated ratings, we can use 

those restaurants in search for the maximum of ( )cf r .  However, as with décor and service 
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ratings, we might not have the user’s food ratings ( )cf r  for all such restaurants and, thus, will 

also need to use rating estimation procedure for ( )cf r  before making any recommendations.   

We believe that the problem of finding Pareto-optimal solution set and the iterative 

method of consecutive single criterion optimizations for multi-criteria recommendation problems 

mentioned above should also constitute interesting and challenging problems.  

3.5.  Non-intrusiveness 

Many recommender systems are intrusive in the sense that they require explicit feedback from 

the user and often at a significant level of user involvement.  For example, before recommending 

any newsgroup articles, the system needs to acquire ratings of previously read articles, and often 

many of them.  Since it is impractical to elicit many ratings of these articles from the user, some 

recommender systems use non-intrusive rating determination methods where certain proxies are 

used to estimate real ratings.  For example, the amount of time a user spends reading a 

newsgroup article can serve as a proxy of the article’s rating given by this user.  Some non-

intrusive methods of getting user feedback are presented in [18, 53, 66, 74, 94].  However, non-

intrusive ratings (such as time spent reading an article) are often inaccurate and cannot fully 

replace explicit ratings provided by the user.  Therefore, the problem of minimizing intrusiveness 

while maintaining certain levels of accuracy of recommendations needs to be addressed by the 

recommender systems researchers. 

One way to explore the intrusiveness problem is to determine an optimal number of 

ratings the system should ask from a new user.  For example, before recommending any movies, 

MovieLens.org first asks the user to rate a predefined number of movies (e.g., 20).  This request 

incurs certain costs on the end-user that can be modeled in various ways, the simplest model 

being a fixed-cost model (i.e., the cost of rating each movie is C and the cost of rating n movies 
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is C⋅n).  Then the intrusiveness problem can be formulated as an optimization problem that tries 

to find an optimal number of initial rating requests n as follows.  Each additional rating supplied 

by the user increases the accuracy of recommendations (or any other effectiveness measure) and, 

therefore, results in certain benefits for the user.  One interesting intrusiveness-related research 

problem would be to develop formal models for defining and measuring benefit B(n) of 

supplying n initial ratings in terms of the increased accuracy of predictions based on these 

ratings.  Once it is known how to measure benefits B(n) (e.g., by measuring the predictive 

accuracy of a recommender system), we need to determine an optimal number of initial ratings n 

that maximizes expression B(n) – C⋅n.  Clearly, optimal value of n is reached when marginal 

benefits are equal to marginal costs, i.e., when ∆B(n) = C.  The optimal solution should exist 

under the assumption that B(n) is a monotonically increasing function in n with decreasing 

marginal benefits ∆B(n) that asymptotically converge to zero.   

Another interesting research opportunity lies in developing marginal cost models that are 

more advanced than the fixed-cost model described above and that can potentially include 

cost/benefit analysis of using both implicit and explicit ratings in a recommender system.  

Finally, the issue of incrementally selecting good training data for modeling purposes is 

the problem of active learning, which is a fairly well-studied area in the machine learning 

literature, and numerous approaches have been proposed to addressing this problem [23, 24, 36, 

58].  We believe that applying active learning methods to address the non-intrusiveness issue 

constitutes another interesting research opportunity. 

3.6.  Flexibility 

Most of the recommendation methods are inflexible in the sense that they are “hard-wired” into 

the systems by the vendors and therefore support only a predefined and fixed set of 

recommendations.  Therefore, the end-user cannot customize recommendations according to his 
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or her needs in real time.  This problem has been identified in [2], and Recommendation Query 

Language (RQL) has been proposed to address it [2].  RQL is an SQL-like language for 

expressing flexible user-specified recommendation requests.  For example, the request 

“recommend to each user from New York the best three movies that are longer than two hours” 

can be expressed in RQL as: 

   RECOMMEND  Movie TO User 
     BASED ON Rating 
     SHOW TOP 3 
    FROM  MovieRecommender 
             WHERE Movie.Length > 120 AND User.City = “New York”. 

Also, most of the recommender systems recommend only individual items to individual 

users and do not deal with aggregation.  However, it is important to be able to provide 

aggregated recommendations in a number of applications, such as recommend brands or 

categories of products to certain segments of users.  For example, a travel-related recommender 

system may want to recommend vacations in Florida (category of products) to the undergraduate 

students from the Northeast (user segment) during the spring break. One way to support 

aggregated recommendations is by utilizing the OLAP-based approach [19] to multidimensional 

recommendations.  OLAP-based systems naturally support aggregation hierarchies, and the 

initial approaches to deploying OLAP-based methods in recommender systems are presented in 

[2, 3].  However, more work is required to develop a more comprehensive understanding of how 

to use the OLAP approach in recommender systems, and this constitutes an interesting and 

challenging research problem.   

3.7.  Effectiveness of recommendations 

The problem of developing good metrics to measure effectiveness of recommendations has been 

extensively addressed in the recommender systems literature.  Some examples of this work 

include [41, 44, 69, 107].  In most of the recommender systems literature, the performance 
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evaluation of recommendation algorithms is usually done in terms of the coverage and accuracy 

metrics.  Coverage measures the percentage of items for which a recommender system is capable 

of making predictions [41].  Accuracy measures can be either statistical or decision-support [41].  

Statistical accuracy metrics mainly compare the estimated ratings (e.g., as defined in (16)) 

against the actual ratings R in the User×Item matrix, and include Mean Absolute Error (MAE), 

root mean squared error, and correlation between predictions and ratings.  Decision-support 

measures determine how well a recommender system can make predictions of high-relevance 

items (i.e., items that would be rated highly by the user).  They include classical IR measures of 

precision (the percentage of truly “high” ratings among those that were predicted to be “high” by 

the recommender system), recall (the percentage of correctly predicted “high” ratings among all 

the ratings known to be “high”), F-measure (a harmonic mean of precision and recall), and 

Receiver Operating Characteristic (ROC) measure demonstrating the tradeoff between true 

positive and false positive rates in recommender systems [41].   

Although popular, these empirical evaluation measures have certain limitations.  One 

limitation is that these measures are typically performed on test data that the users chose to rate.  

However, items that users choose to rate are likely to constitute a skewed sample, e.g., users may 

rate mostly the items that they like.  In other words, the empirical evaluation results typically 

only show how accurate the system is on items the user decided to rate, whereas the ability of the 

system to properly evaluate a random item (which it should be able to do during its normal real-

life use) is not tested.  Understandably, it is expensive and time-consuming to conduct controlled 

experiments with users in the recommender systems settings, therefore, the experiments that test 

recommendation quality on an unbiased random sample are rare, e.g., [69].  However, the high-

quality experiments are necessary in order to truly understand the benefits and limitations of the 

proposed recommendation techniques. 
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In addition, although crucial for measuring accuracy of recommendations, the technical 

measures mentioned earlier often do not capture adequately “usefulness” and “quality” of 

recommendations.  For example, as [107] observe for a supermarket application, recommending 

obvious items (such as milk or bread) that the consumer will buy anyway will produce high 

accuracy rates; however, it will not be very helpful to the consumer.  Therefore, it is also 

important to develop economics-oriented measures that capture the business value of 

recommendations, such as return on investments (ROI) and customer lifetime value (LTV) 

measures [32, 88, 95].  Developing and studying the measures that would remedy the limitations 

described in this section constitutes an interesting and important research topic.  

3.8.  Other Extensions 

Other important research issues that have been explored in recommender systems literature 

include explainability [12, 42], trustworthiness [28], scalability [4, 39, 91, 93], and privacy [82, 

93] issues of recommender systems.  However, we will not review this work and will not discuss 

research opportunities in these areas because of the space limitation.  

4.  Conclusions 

Recommender systems made a significant progress over the last decade when numerous content-

based, collaborative and hybrid methods were proposed and several “industrial-strength” systems 

have been developed.  However, despite all these advances, the current generation of 

recommender systems surveyed in this paper still requires further improvements to make 

recommendation methods more effective in a broader range of applications.  In this paper, we 

reviewed various limitations of the current recommendation methods and discussed possible 

extensions that can provide better recommendation capabilities.  These extensions include, 

among others, the improved modeling of users and items, incorporation of the contextual 

information into the recommendation process, support for multi-criteria ratings, and provision of 
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a more flexible and less intrusive recommendation process.  We hope that the issues presented in 

this paper would advance the discussion in the recommender systems community about the next 

generation of recommendation technologies. 
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