
 1

Towards the Next Generation of Recommender Systems:
A Survey of the State-of-the-Art and Possible Extensions

Gediminas Adomavicius1 and Alexander Tuzhilin2
Abstract–The paper presents an overview of the field of recommender systems and describes the current
generation of recommendation methods that are usually classified into the following three main
categories: content-based, collaborative, and hybrid recommendation approaches. The paper also
describes various limitations of current recommendation methods and discusses possible extensions that
can improve recommendation capabilities and make recommender systems applicable to an even broader
range of applications. These extensions include, among others, improvement of understanding of users
and items, incorporation of the contextual information into the recommendation process, support for
multi-criteria ratings, and provision of more flexible and less intrusive types of recommendations.

Index Terms–Recommender systems, collaborative filtering, rating estimation methods, extensions to
recommender systems.

1. Introduction

Recommender systems became an important research area since the appearance of the first

papers on collaborative filtering since the mid-1990s [45, 86, 97]. There has been much work

done both in the industry and academia on developing new approaches to recommender systems

over the last decade. The interest in this area still remains high because it constitutes a problem-

rich research area and because of the abundance of practical applications that help users to deal

with information overload and provide personalized recommendations, content and services to

them. Examples of such applications include recommending books, CDs and other products at

Amazon.com [61], movies by MovieLens [67], and news at VERSIFI Technologies (formerly

AdaptiveInfo.com) [14]. Moreover, some of the vendors have incorporated recommendation

capabilities into their commerce servers [78].

 However, despite all these advances, the current generation of recommender systems still

requires further improvements to make recommendation methods more effective and applicable

to an even broader range of real-life applications, including recommending vacations, certain

1 G. Adomavicius is with the Carlson School of Management, University of Minnesota, 321 19th Avenue South,
Minneapolis, MN 55455. Email: gedas@umn.edu.
2 A. Tuzhilin is with the Stern School of Business, New York University, 44 West 4th Street, New York, NY 10012.
Email: atuzhili@stern.nyu.edu.

 2

types of financial services to investors, and products to purchase in a store made by a “smart”

shopping cart [106]. These improvements include better methods for representing user behavior

and the information about the items to be recommended, more advanced recommendation

modeling methods, incorporation of various contextual information into the recommendation

process, utilization of multi-criteria ratings, development of less intrusive and more flexible

recommendation methods that also rely on the measures that more effectively determine

performance of recommender systems.

 In this paper, we describe various ways to extend capabilities of recommender systems.

However, before doing this, we first present a comprehensive survey of the state-of-the-art in

recommender systems in Section 2. Then we identify various limitations of the current

generation of recommendation methods and discuss some initial approaches to extending their

capabilities in Section 3.

2. The Survey of Recommender Systems

Although the roots of recommender systems can be traced back to the extensive work in the

cognitive science [87], approximation theory [81], information retrieval [89], forecasting theories

[6], and also have links to management science [71], and also to the consumer choice modeling

in marketing [60], recommender systems emerged as an independent research area in the mid-

1990’s when researchers started focusing on recommendation problems that explicitly rely on the

ratings structure. In its most common formulation, the recommendation problem is reduced to

the problem of estimating ratings for the items that have not been seen by a user. Intuitively, this

estimation is usually based on the ratings given by this user to other items and on some other

information that will be formally described below. Once we can estimate ratings for the yet

unrated items, we can recommend to the user the item(s) with the highest estimated rating(s).

More formally, the recommendation problem can be formulated as follows. Let C be the

 3

set of all users and let S be the set of all possible items that can be recommended, such as books,

movies, or restaurants. The space S of possible items can be very large, ranging in hundreds of

thousands or even millions of items in some applications, such as recommending books or CDs.

Similarly, the user space can also be very large – millions in some cases. Let u be a utility

function that measures usefulness of item s to user c, i.e., :u C S R× → , where R is a totally

ordered set (e.g., non-negative integers or real numbers within a certain range). Then for each

user c C∈ , we want to choose such item s S′∈ that maximizes the user’s utility. More formally:

 , arg max (,)c
s S

c C s u c s
∈

′∀ ∈ = (1)

In recommender systems the utility of an item is usually represented by a rating, which indicates

how a particular user liked a particular item, e.g., John Doe gave the movie “Harry Potter” the

rating of 7 (out of 10). However, as indicated earlier, in general utility can be an arbitrary

function, including a profit function. Depending on the application, utility u can either be

specified by the user, as is often done for the user-defined ratings, or is computed by the

application, as can be the case for a profit-based utility function.

 Each element of the user space C can be defined with a profile that includes various user

characteristics, such as age, gender, income, marital status, etc. In the simplest case, the profile

can contain only a single (unique) element, such as User ID. Similarly, each element of the item

space S is defined with a set of characteristics. For example, in a movie recommendation

application, where S is a collection of movies, each movie can be represented not only by its ID,

but also by its title, genre, director, year of release, leading actors, etc.

 The central problem of recommender systems lies in that utility u is usually not defined

on the whole C S× space, but only on some subset of it. This means u needs to be extrapolated

to the whole space C S× . In recommender systems, utility is typically represented by ratings

 4

and is initially defined only on the items previously rated by the users. For example, in a movie

recommendation application (such as the one at MovieLens.org), users initially rate some subset

of movies that they have already seen. An example of a user-item rating matrix for a movie

recommendation application is presented in Table 1, where ratings are specified on the scale of 1

to 5. The “∅” symbol for some of the ratings in Table 1 means that the users have not rated the

corresponding movies. Therefore, the recommendation engine should be able to estimate

(predict) the ratings of the non-rated movie/user combinations and issue appropriate

recommendations based on these predictions.

 K-PAX Life of Brian Memento Notorious
Alice 4 3 2 4
Bob ∅ 4 5 5

Cindy 2 2 4 ∅
David 3 ∅ 5 2

Table 1. A fragment of a rating matrix for a movie recommender system.

Extrapolations from known to unknown ratings are usually done by (a) specifying heuristics that

define the utility function and empirically validating its performance, and (b) estimating the

utility function that optimizes certain performance criterion, such as the mean square error.

 Once the unknown ratings are estimated, actual recommendations of an item to a user are

made by selecting the highest rating among all the estimated ratings for that user, according to

formula (1). Alternatively, we can recommend N best items to a user or a set of users to an item.

The new ratings of the not-yet-rated items can be estimated in many different ways using

the methods from machine learning, approximation theory and various heuristics. Recommender

systems are usually classified according to their approach to rating estimation, and in the next

section, we will present such a classification that was proposed in the literature and will provide

a survey of different types of recommender systems. The commonly accepted formulation of the

recommendation problem was first stated in [45, 86, 97] and this problem has been studied

 5

extensively since then. Moreover, recommender systems are usually classified into the following

categories, based on how recommendations are made [8]:

• Content-based recommendations: the user is recommended items similar to the ones the

user preferred in the past;

• Collaborative recommendations: the user is recommended items that people with similar

tastes and preferences liked in the past;

• Hybrid approaches: these methods combine collaborative and content-based methods.

In addition to recommender systems that predict the absolute values of ratings that individual

users would give to the yet unseen items (as discussed above), there has been work done on

preference-based filtering, i.e., predicting the relative preferences of users [22, 35, 51, 52]. For

example, in a movie recommendation application preference-based filtering techniques would

focus on predicting the correct relative order of the movies, rather than their individual ratings.

However, this paper focuses primarily on the rating-based recommenders, since it constitutes the

most popular approach to recommender systems.

2.1 Content-based Methods

In content-based recommendation methods, the utility (,)u c s of item s for user c is estimated

based on the utilities (,)iu c s assigned by user c to items is S∈ that are “similar” to item s. For

example, in a movie recommendation application, in order to recommend movies to user c, the

content-based recommender system tries to understand the commonalities among the movies

user c has rated highly in the past (specific actors, directors, genres, subject matter, etc.). Then,

only the movies that have a high degree of similarity to whatever user’s preferences are would

get recommended.

The content-based approach to recommendation has its roots in information retrieval [7,

89] and information filtering [10] research. Because of the significant and early advancements

made by the information retrieval and filtering communities and because of the importance of

 6

several text-based applications, many current content-based systems focus on recommending

items containing textual information, such as documents, Web sites (URLs), and Usenet news

messages. The improvement over the traditional information retrieval approaches comes from

the use of user profiles that contain information about users’ tastes, preferences, and needs. The

profiling information can be elicited from users explicitly, e.g., through questionnaires, or

implicitly – learned from their transactional behavior over time.

More formally, let Content(s) be an item profile, i.e., a set of attributes characterizing

item s. It is usually computed by extracting a set of features from item s (its content) and is used

to determine appropriateness of the item for recommendation purposes. Since, as mentioned

earlier, content-based systems are designed mostly to recommend text-based items, the content in

these systems is usually described with keywords. For example, a content-based component of

the Fab system [8], which recommends Web pages to users, represents Web page content with

the 100 most important words. Similarly, the Syskill & Webert system [77] represents

documents with the 128 most informative words. The “importance” (or “informativeness”) of

word ki in document dj is determined with some weighting measure wij that can be defined in

several different ways.

One of the best-known measures for specifying keyword weights in Information

Retrieval is the term frequency/inverse document frequency (TF-IDF) measure [89] that is

defined as follows. Assume that N is the total number of documents that can be recommended to

users and that keyword ki appears in ni of them. Moreover, assume that ,i jf is the number of

times keyword ki appears in document dj. Then ,i jTF , the term frequency (or normalized

frequency) of keyword ki in document dj, is defined as

 7

,
,

,max
i j

i j
z z j

f
TF

f
= (2)

where the maximum is computed over the frequencies ,z jf of all keywords kz that appear in the

document dj. However, keywords that appear in many documents are not useful in

distinguishing between a relevant document and a non-relevant one. Therefore, the measure of

inverse document frequency (IDFi) is often used in combination with simple term frequency

(,i jTF). The inverse document frequency for keyword ki is usually defined as

logi
i

NIDF
n

= (3)

Then the TF-IDF weight for keyword ki in document dj is defined as

, ,i j i j iw TF IDF= × (4)

and the content of document dj is defined as Content(dj) = (w1j, …wkj).

As stated earlier, content-based systems recommend items similar to those that a user

liked in the past [56, 69, 77]. In particular, various candidate items are compared with items

previously rated by the user, and the best-matching item(s) are recommended. More formally,

let ContentBasedProfile(c) be the profile of user c containing tastes and preferences of this user.

These profiles are obtained by analyzing the content of the items previously seen and rated by

the user and are usually constructed using keyword analysis techniques from information

retrieval. For example, ContentBasedProfile(c) can be defined as a vector of weights (wc1,

…,wck), where each weight wci denotes the importance of keyword ki to user c and can be

computed from individually rated content vectors using a variety of techniques. For example,

some averaging approach, such as Rocchio algorithm [85], can be used to compute

ContentBasedProfile(c) as an “average” vector from an individual content vectors [8, 56]. On

the other hand, [77] use a Bayesian classifier in order to estimate the probability that a document

 8

is liked. The Winnow algorithm [62] has also been shown to work well for this purpose,

especially in the situations where there are many possible features [76].

In content-based systems, the utility function u(c, s) is usually defined as:

 (,) ((), ())u c s score ContentBasedProfile c Content s= (5)

Using the above-mentioned information retrieval-based paradigm of recommending Web pages,

Web site URLs, or Usenet news messages, both ContentBasedProfile(c) of user c and Content(s)

of document s can be represented as TF-IDF vectors cwG and swG of keyword weights. Moreover,

utility function u(c, s) is usually represented in information retrieval literature by some scoring

heuristic defined in terms of vectors cwG and swG , such as cosine similarity measure [7, 89]:

, ,1

2 22 2
, ,1 1

(,) cos(,)
|| || || ||

K
i c i sc s i

c s K K
c s

i c i si i

w ww wu c s w w
w w w w

=

= =

⋅
= = =

×
∑

∑ ∑

G GG G
G G (6)

where K is the total number of keywords in the system.

For example, if user c reads many online articles on the topic of bioinformatics, then

content-based recommendation techniques will be able to recommend other bioinformatics

articles to user c. This is the case, because these articles will have more bioinformatics-related

terms (e.g., “genome”, “sequencing”, “proteomics”) than articles on other topics, and, therefore,

ContentBasedProfile(c), as defined by vector cwG , will represent such terms ki with high weights

wic. Consequently, a recommender system using the cosine or a related similarity measure will

assign higher utility u(c, s) to those articles s that have high-weighted bioinformatics terms in swG

and lower utility to the ones where bioinformatics terms are weighted less.

 Besides the traditional heuristics that are based mostly on information retrieval methods,

other techniques for content-based recommendation have also been used, such as Bayesian

classifiers [70, 77] and various machine learning techniques, including clustering, decision trees,

 9

and artificial neural networks [77]. These techniques differ from information retrieval-based

approaches in that they calculate utility predictions based not on a heuristic formula, such as a

cosine similarity measure, but rather are based on a model learned from the underlying data using

statistical learning and machine learning techniques. For example, based on a set of Web pages

that were rated as “relevant” or “irrelevant” by the user, [77] use the naïve Bayesian classifier

[31] to classify unrated Web pages. More specifically, the naïve Bayesian classifier is used to

estimate the following probability that page pj belongs to a certain class Ci (e.g., relevant or

irrelevant) given the set of keywords 1, jk , …, ,n jk on that page:

 1, ,(| & &)i j n jP C k k… (7)

Moreover, [77] use the assumption that keywords are independent and, therefore, the above

probability is proportional to

 ,() (|)i x j i
x

P C P k C∏ (8)

While the keyword independence assumption does not necessarily apply in many applications,

experimental results demonstrate that naïve Bayesian classifiers still produce high classification

accuracy [77]. Furthermore, both ,(|)x j iP k C and ()iP C can be estimated from the underlying

training data. Therefore, for each page pj, the probability 1, ,(| & &)i j n jP C k k… is computed for

each class Ci, and page pj is assigned to class Ci having the highest probability [77].

While not explicitly dealing with providing recommendations, the text retrieval

community has contributed several techniques that are being used in content-based recommender

systems. One example of such technique would be the research on adaptive filtering [101, 112],

which focuses on becoming more accurate at identifying relevant documents incrementally, by

observing the documents one-by-one in a continuous document stream. Another example would

be the work on threshold setting [84, 111], which focuses on determining the extent to which

 10

documents should match a given query in order to be relevant to the user. Other text retrieval

methods are described in [50] and can also be found in the proceedings of the Text Retrieval

Conference (TREC) (http://trec.nist.gov).

As was observed in [8, 97], content-based recommender systems have several limitations

that are described in the rest of this section.

Limited content analysis. Content-based techniques are limited by the features that are

explicitly associated with the objects that these systems recommend. Therefore, in order to have

a sufficient set of features, the content must either be in a form that can be parsed automatically

by a computer (e.g., text), or the features should be assigned to items manually. While

information retrieval techniques work well in extracting features from text documents, some

other domains have an inherent problem with automatic feature extraction. For example,

automatic feature extraction methods are much harder to apply to the multimedia data, e.g.,

graphical images, audio and video streams. Moreover, it is often not practical to assign attributes

by hand due to limitations of resources [97].

Another problem with limited content analysis is that, if two different items are

represented by the same set of features, they are indistinguishable. Therefore, since text-based

documents are usually represented by their most important keywords, content-based systems

cannot distinguish between a well-written article and a badly written one, if they happen to use

the same terms [97].

Over-specialization. When the system can only recommend items that score highly against a

user’s profile, the user is limited to being recommended items similar to those already rated. For

example, a person with no experience with Greek cuisine would never receive a recommendation

for even the greatest Greek restaurant in town. This problem, which has also been studied in

other domains, is often addressed by introducing some randomness. For example, the use of

 11

genetic algorithms has been proposed as a possible solution in the context of information

filtering [98]. In addition, the problem with over-specialization is not only that the content-based

systems cannot recommend items that are different from anything the user has seen before. In

certain cases, items should not be recommended if they are too similar to something the user has

already seen, such as different news article describing the same event. Therefore, some content-

based recommender systems, such as DailyLearner [13], filter out items not only if they are too

different from user’s preferences, but also if they are too similar to something the user has seen

before. Furthermore, [112] provide a set of five redundancy measures to evaluate whether a

document that is deemed to be relevant contains some novel information as well. In summary,

the diversity of recommendations is often a desirable feature in recommender systems. Ideally,

the user should be presented with a range of options and not with a homogeneous set of

alternatives. For example, it is not necessarily a good idea to recommend all movies by Woody

Allen to a user who liked one of them.

New user problem. The user has to rate a sufficient number of items before a content-based

recommender system can really understand user’s preferences and present the user with reliable

recommendations. Therefore, a new user, having very few ratings, would not be able to get

accurate recommendations.

2.2 Collaborative Methods

Unlike content-based recommendation methods, collaborative recommender systems (or

collaborative filtering systems) try to predict the utility of items for a particular user based on the

items previously rated by other users. More formally, the utility u(c, s) of item s for user c is

estimated based on the utilities u(cj, s) assigned to item s by those users cj∈C who are “similar”

to user c. For example, in a movie recommendation application, in order to recommend movies

to user c, the collaborative recommender system tries to find the “peers” of user c, i.e., other

 12

users that have similar tastes in movies (rate the same movies similarly). Then, only the movies

that are most liked by the “peers” of user c would get recommended.

There have been many collaborative systems developed in the academia and the industry.

It can be argued that the Grundy system [87] was the first recommender system, which proposed

to use stereotypes as a mechanism for building models of users based on a limited amount of

information on each individual user. Using stereotypes, the Grundy system would build

individual user models and use them to recommend relevant books to each user. Later on, the

Tapestry system relied on each user to identify like-minded users manually [38]. GroupLens

[53, 86], Video Recommender [45], and Ringo [97] were the first systems to use collaborative

filtering algorithms to automate prediction. Other examples of collaborative recommender

systems include the book recommendation system from Amazon.com, the PHOAKS system that

helps people find relevant information on the WWW [103], and the Jester system that

recommends jokes [39].

According to [15], algorithms for collaborative recommendations can be grouped into

two general classes: memory-based (or heuristic-based) and model-based.

Memory-based algorithms [15, 27, 72, 86, 97] essentially are heuristics that make rating

predictions based on the entire collection of previously rated items by the users. That is, the

value of the unknown rating rc,s for user c and item s is usually computed as an aggregate of the

ratings of some other (usually the N most similar) users for the same item s:

 , ,
ˆ

aggrc s c s
c C

r r ′
′∈

= (9)

where Ĉ denotes the set of N users that are the most similar to user c and who have rated item s

(N can range anywhere from 1 to the number of all users). Some examples of the aggregation

function are:

 13

, , , , , ,
ˆ ˆ ˆ

1(a) (b) (,) (c) (,) ()c s c s c s c s c s c c s c
c C c C c C

r r r k sim c c r r r k sim c c r r
N ′ ′ ′ ′

′ ′ ′∈ ∈ ∈

′ ′= = × = + × −∑ ∑ ∑ (10)

where multiplier k serves as a normalizing factor and is usually selected as

ˆ1 | (,) |
c C

k sim c c
′∈

′= ∑ , and where the average rating of user c, cr , in (10c) is defined as

() ,1 | |
c

c c c ss S
r S r

∈
= ∑ , where ,{ | }c c sS s S r= ∈ ≠ ∅ 3. (11)

In the simplest case, the aggregation can be a simple average, as defined by expression (10a).

However, the most common aggregation approach is to use the weighted sum, shown in (10b).

The similarity measure between the users c and c’, sim(c, c’), is essentially a distance measure

and is used as a weight, i.e., the more similar users c and c’ are, the more weight rating rc’,s will

carry in the prediction of rc,s. Note that sim(x,y) is a heuristic artifact that is introduced in order

to be able to differentiate between levels of user similarity (i.e., to be able to find a set of “closest

peers” or “nearest neighbors” for each user) and at the same time simplify the rating estimation

procedure. As shown in (10b), different recommendation applications can use their own user

similarity measure, as long as the calculations are normalized using the normalizing factor k, as

shown above. The two most commonly used similarity measures will be described below. One

problem with using the weighted sum, as in (10b), is that it does not take into account the fact

that different users may use the rating scale differently. The adjusted weighted sum, shown in

(10c), has been widely used to address this limitation. In this approach, instead of using the

absolute values of ratings, the weighted sum uses their deviations from the average rating of the

corresponding user. Another way to overcome the differing uses of the rating scale is to deploy

preference-based filtering [22, 35, 51, 52], which focuses on predicting the relative preferences

of users instead of absolute rating values, as was pointed out earlier in Section 2.

3 We use the ,c sr =∅ notation to indicate that item s has not been rated by user c.

 14

Various approaches have been used to compute the similarity (,)sim c c′ between users in

collaborative recommender systems. In most of these approaches, the similarity between two

users is based on their ratings of items that both users have rated. The two most popular

approaches are correlation- and cosine-based. To present them, let Sxy be the set of all items co-

rated by both users x and y, i.e., , ,{ | & }xy x s y sS s S r r= ∈ ≠ ∅ ≠∅ . In collaborative

recommender systems Sxy is used mainly as an intermediate result for calculating the “nearest

neighbors” of user x and is often computed in a straightforward manner, i.e., by computing the

intersection of sets Sx and Sy. However, some methods, such as the graph-theoretic approach to

collaborative filtering [4], can determine the nearest neighbors of x without computing Sxy for all

users y. In the correlation-based approach, the Pearson correlation coefficient is used to measure

the similarity [86, 97]:

, ,

2 2
, ,

()()
(,)

() ()
xy

xy xy

x s x y s y
s S

x s x y s y
s S s S

r r r r
sim x y

r r r r
∈

∈ ∈

− −

=
− −

∑

∑ ∑
 (12)

In the cosine-based approach [15, 91], the two users x and y are treated as two vectors in

m-dimensional space, where | |xym S= . Then, the similarity between two vectors can be

measured by computing the cosine of the angle between them:

, ,

2 2
2 2 , ,

(,) cos(,)
|| || || ||

xy

xy xy

x s y s
s S

x s y s
s S s S

r r
x ysim x y x y

x y r r
∈

∈ ∈

⋅
= = =

×

∑

∑ ∑

G GG G
G G (13)

where x y⋅G G denotes the dot-product between the vectors xG and yG . Still another approach to

measuring similarity between users uses the mean squared difference measure and is described

in [97]. Note that different recommender systems may take different approaches in order to

implement the user similarity calculations and rating estimations as efficiently as possible. One

 15

common strategy is to calculate all user similarities sim(x, y) (including the calculation of Sxy) in

advance and recalculate them only once in a while (since the network of peers usually does not

change dramatically in a short time). Then, whenever the user asks for a recommendation, the

ratings can be efficiently calculated on demand using pre-computed similarities.

Note, that both the content-based and the collaborative approaches use the same cosine

measure from information retrieval literature. However, in content-based recommender systems

it is used to measure the similarity between vectors of TF-IDF weights, whereas in collaborative

systems it measures the similarity between vectors of the actual user-specified ratings.

Many performance-improving modifications, such as default voting, inverse user

frequency, case amplification [15], and weighted-majority prediction [27, 72], have been

proposed as extensions to these standard correlation-based and cosine-based techniques. For

example, the default voting [15] is an extension to the memory-based approaches described

above. It was observed that whenever there are relatively few user-specified ratings, these

methods would not work well in computing similarity between users x and y since the similarity

measure is based on the intersection of the itemsets, i.e., sets of items rated by both users x and y.

It was empirically shown that the rating prediction accuracy could improve if we assume some

default rating value for the missing ratings [15].

Also, while the above techniques traditionally have been used to compute similarities

between users, [91] proposed to use the same correlation-based and cosine-based techniques to

compute similarities between items instead and obtain the ratings from them. This idea has been

further extended in [29] for top-N item recommendations. In addition, [29, 91] present empirical

evidence that item-based algorithms can provide better computational performance than

traditional user-based collaborative methods, while at the same time providing comparable or

better quality than the best available user-based algorithms.

 16

In contrast to memory-based methods, model-based algorithms [11, 15, 37, 39, 47, 64,

75, 105] use the collection of ratings to learn a model, which is then used to make rating

predictions. For example, [15] proposes a probabilistic approach to collaborative filtering, where

the unknown ratings are calculated as

 , , , ,
0

() Pr(| ,)
n

c s c s c s c s c
i

r E r i r i r s S′
=

′= = × = ∈∑ (14)

and it is assumed that rating values are integers between 0 and n, and the probability expression

is the probability that user c will give a particular rating to item s given that user’s ratings of the

previously rated items. To estimate this probability, [15] proposes two alternative probabilistic

models: cluster models and Bayesian networks. In the first model, like-minded users are

clustered into classes. Given the user’s class membership, the user ratings are assumed to be

independent, i.e., the model structure is that of a naïve Bayesian model. The number of classes

and the parameters of the model are learned from the data. The second model represents each

item in the domain as a node in a Bayesian network, where the states of each node correspond to

the possible rating values for each item. Both the structure of the network and the conditional

probabilities are learned from the data. One limitation of this approach is that each user can be

clustered into a single cluster, whereas some recommendation applications may benefit from the

ability to cluster users into several categories at once. For example, in a book recommendation

application, a user may be interested in one topic (e.g., programming) for work purposes and a

completely different topic (e.g., fishing) for leisure.

Moreover, [11] proposed a collaborative filtering method in a machine learning

framework, where various machine learning techniques (such as artificial neural networks)

coupled with feature extraction techniques (such as singular value decomposition – an algebraic

technique for reducing dimensionality of matrices) can be used. Both [15] and [11] compare

 17

their respective model-based approaches with standard memory-based approaches and report that

in some applications model-based methods outperform memory-based approaches in terms of

accuracy of recommendations. However, the comparison in both cases is purely empirical and

no underlying theoretical evidence supporting this claim is provided.

There have been several other model-based collaborative recommendation approaches

proposed in the literature. A statistical model for collaborative filtering was proposed in [105],

and several different algorithms for estimating the model parameters were compared, including

K-means clustering and Gibbs sampling. Other collaborative filtering methods include a

Bayesian model [20], a probabilistic relational model [37], a linear regression [91], and a

maximum entropy model [75]. More recently, a significant amount of research has been done in

trying to model the recommendation process using more complex probabilistic models. For

instance, [96] view the recommendation process as a sequential decision problem and propose to

use Markov decision processes (a well known stochastic technique for modeling sequential

decisions) for generating recommendations. Other probabilistic modeling techniques for

recommender systems include probabilistic latent semantic analysis [47, 48] and a combination

of multinomial mixture and aspect models using generative semantics of Latent Dirichlet

Allocation [64]. Similarly, [99] also use probabilistic latent semantic analysis to propose a

flexible mixture model that allows modeling the classes of users and items explicitly with two

sets of latent variables. Furthermore, [55] use a simple probabilistic model to demonstrate that

collaborative filtering is valuable with relatively little data on each user, and that, in certain

restricted settings, simple collaborative filtering algorithms are almost as effective as the best

possible algorithms in terms of utility.

As in the case of content-based techniques, the main difference between collaborative

model-based techniques and heuristic-based approaches is that the model-based techniques

 18

calculate utility (rating) predictions based not on some ad-hoc heuristic rules, but rather based on

a model learned from the underlying data using statistical and machine learning techniques. A

method combining both memory-based and model-based approaches was proposed in [79],

where it was empirically demonstrated that the use of this combined approach can provide better

recommendations than pure memory-based and model-based collaborative approaches.

A different approach to improving the performance of existing collaborative filtering

algorithms was taken in [108], where the input set of user-specified ratings is carefully selected

using several techniques that exclude noise, redundancy, and exploit the sparsity of the ratings’

data. The empirical results demonstrate the increase in accuracy and efficiency for model-based

collaborative filtering algorithms. It is also suggested that the proposed input selection

techniques may help the model-based algorithms to address the problem of learning from large

databases [108]. Furthermore, among the latest developments, [109] propose a probabilistic

approach to collaborative filtering that constitutes yet another way to combine the memory-based

and model-based techniques. In particular, [109] propose (a) to use an active learning approach

to learn the probabilistic model of each user’s preferences and (b) to use the stored user profiles

in a mixture model to calculate recommendations. The latter aspect of the proposed approach

deploys some of the ideas used in the traditional memory-based algorithms.

The pure collaborative recommender systems do not have some of the shortcomings that

content-based systems have. In particular, since collaborative systems use other users’

recommendations (ratings), they can deal with any kind of content and recommend any items,

even the ones that are dissimilar to those seen in the past. However, collaborative systems have

their own limitations [8, 57], as described below.

New user problem. It is the same problem as with content-based systems. In order to make

accurate recommendations, the system must first learn the user’s preferences from the ratings

 19

that the user makes. Several techniques have been proposed to address this problem. Most of

them use hybrid recommendation approach, which combines content-based and collaborative

techniques. The next section describes hybrid recommender systems in more detail. An

alternative approach is presented in [83, 109], where various techniques are explored for

determining the best (i.e., most informative to a recommender system) items for a new user to

rate. These techniques use strategies that are based on item popularity, item entropy, user

personalization, and combinations of the above [83, 109].

New item problem. New items are added regularly to recommender systems. Collaborative

systems rely solely on users’ preferences to make recommendations. Therefore, until the new

item is rated by a substantial number of users, the recommender system would not be able to

recommend it. This problem can also be addressed using hybrid recommendation approaches,

described in the next section.

Sparsity. In any recommender system, the number of ratings already obtained is usually very

small compared to the number of ratings that need to be predicted. Effective prediction of

ratings from a small number of examples is important. Also, the success of the collaborative

recommender system depends on the availability of a critical mass of users. For example, in the

movie recommendation system there may be many movies that have been rated only by few

people and these movies would be recommended very rarely, even if those few users gave high

ratings to them. Also, for the user whose tastes are unusual compared to the rest of the

population there will not be any other users who are particularly similar, leading to poor

recommendations [8]. One way to overcome the problem of rating sparsity is to use user profile

information when calculating user similarity. That is, two users could be considered similar not

only if they rated the same movies similarly, but also if they belong to the same demographic

segment. For example, [76] uses gender, age, area code, education, and employment information

 20

of users in the restaurant recommendation application. This extension of traditional

collaborative filtering techniques is sometimes called “demographic filtering” [76]. Another

approach that also explores similarities among users has been proposed in [49], where the

sparsity problem is addressed by applying associative retrieval framework and related spreading

activation algorithms to explore transitive associations among consumers through their past

transactions and feedback. A different approach for dealing with sparse rating matrices was used

in [11, 90], where a dimensionality reduction technique, Singular Value Decomposition (SVD),

was used to reduce dimensionality of sparse ratings matrices. SVD is a well-known method for

matrix factorization that provides the best lower rank approximations of the original matrix [90].

2.3. Hybrid Methods

Several recommendation systems use a hybrid approach by combining collaborative and content-

based methods, which helps to avoid certain limitations of content-based and collaborative

systems [8, 9, 21, 76, 94, 100, 105]. Different ways to combine collaborative and content-based

methods into a hybrid recommender system can be classified as follows: (1) implementing

collaborative and content-based methods separately and combining their predictions, (2)

incorporating some content-based characteristics into a collaborative approach, (3) incorporating

some collaborative characteristics into a content-based approach, and (4) constructing a general

unifying model that incorporates both content-based and collaborative characteristics. All of the

above approaches have been used by recommender systems researchers, as described below.

1. Combining separate recommenders. One way to build hybrid recommender systems is

to implement separate collaborative and content-based systems. Then we can have two different

scenarios. First, we can combine the outputs (ratings) obtained from individual recommender

systems into one final recommendation using either a linear combination of ratings [21] or a

voting scheme [76]. Alternatively, we can use one of the individual recommenders, at any given

 21

moment choosing to use the one that is “better” than others based on some recommendation

“quality” metric. For example, the DailyLearner system [13] selects the recommender system

that can give the recommendation with the higher level of confidence, while [104] chooses the

one whose recommendation is more consistent with past ratings of the user.

2. Adding content-based characteristics to collaborative models. Several hybrid

recommender systems, including Fab [8] and the “collaboration via content” approach, described

in [76], are based on traditional collaborative techniques but also maintain the content-based

profiles for each user. These content-based profiles, and not the commonly rated items, are then

used to calculate the similarity between two users. As mentioned in [76], this allows to

overcome some sparsity-related problems of a purely collaborative approach, since typically not

many pairs of users will have a significant number of commonly rated items. Another benefit of

this approach is that users can be recommended an item not only when this item is rated highly

by users with similar profiles, but also directly, i.e., when this item scores highly against the

user’s profile [8]. [40] employs a somewhat similar approach in using the variety of different

filterbots – specialized content-analysis agents that act as additional participants in a

collaborative filtering community. As a result, the users whose ratings agree with some of the

filterbots’ ratings would be able to receive better recommendations [40]. Similarly, [65] uses a

collaborative approach where the traditional user’s ratings vector is augmented with additional

ratings, which are calculated using a pure content-based predictor.

3. Adding collaborative characteristics to content-based models. The most popular

approach in this category is to use some dimensionality reduction technique on a group of

content-based profiles. For example, [100] use latent semantic indexing (LSI) to create a

collaborative view of a collection of user profiles, where user profiles are represented by term

vectors (as discussed in Section 2.1), resulting in a performance improvement compared to the

 22

pure content-based approach.

4. Developing a single unifying recommendation model. Many researchers have followed

this approach in recent years. For instance, [9] propose to use content-based and collaborative

characteristics (e.g., the age or gender of users or the genre of movies) in a single rule-based

classifier. [80] and [94] propose a unified probabilistic method for combining collaborative and

content-based recommendations, which is based on the probabilistic latent semantic analysis

[46]. Yet another approach is proposed by [25] and [5], where Bayesian mixed-effects

regression models are used that employ Markov chain Monte Carlo methods for parameter

estimation and prediction. In particular, [5] uses the profile information of users and items in a

single statistical model that estimates unknown ratings ijr for user i and item j:

 2
 , (0,), (0,), (0,).ij ij i j j i ij ij i jr x z w e e N N Nµ γ λ σ λ γ= + + + ∼ ∼ Λ ∼ Γ (15)

where 1, ,i I= … and 1, ,j J= … represent users and items respectively, and ije , iλ , and jγ are

random variables taking into effect noise, unobserved sources of user heterogeneity and item

heterogeneity respectively. Also, xij is a matrix containing user and item characteristics, zi is a

vector of user characteristics, and wj is a vector of item characteristics. The unknown parameters

of this model are µ , 2σ , Λ , and Γ , and they are estimated from the data of already known

ratings using Markov chain Monte Carlo methods. In summary, [5] uses user attributes {zi}

constituting a part of a user profile, item attributes {wj} constituting a part of an item profile and

their interactions {xij} to estimate the rating of an item.

Hybrid recommendation systems can also be augmented by knowledge-based techniques

[17], such as case-based reasoning, in order to improve recommendation accuracy and to address

some of the limitations (e.g., new user, new item problems) of traditional recommender systems.

For example, knowledge-based recommender system Entrée [17] uses some domain knowledge

 23

about restaurants, cuisines, and foods (e.g., that “seafood” is not “vegetarian”) to recommend

restaurants to its users. The main drawback of knowledge-based systems is a need for

knowledge acquisition – a well-known bottleneck for many artificial intelligence applications.

However, knowledge-based recommendation systems have been developed for application

domains where domain knowledge is readily available in some structured machine-readable

form, e.g., as an ontology. For example, Quickstep and Foxtrot systems [66] use research paper

topic ontology to recommend online research articles to the users.

Moreover, several papers, such as [8, 65, 76, 100], empirically compare the performance

of the hybrid with the pure collaborative and content-based methods and demonstrate that the

hybrid methods can provide more accurate recommendations than pure approaches.

2.4. Summary and Conclusions

As described in Sections 2.1-2.3, there has been much research done on recommendation

technologies over the past several years that have used a broad range of statistical, machine

learning, information retrieval and other techniques and that significantly advanced the state-of-

art in comparison to early recommender systems that utilized collaborative- and content-based

heuristics. As was discussed above, recommender systems can be categorized as being (a)

content-based, collaborative, or hybrid, based on the recommendation approach used, and (b)

heuristic-based or model-based based on the types of recommendation techniques used for the

rating estimation. We use these two orthogonal dimensions to classify the recommender systems

research in the 2×3 matrix presented in Table 2.

The recommendation methods described in this section have performed well in several

applications, including the ones for recommending books, CDs, and news articles [64, 88], and

some of these methods are used in the “industrial-strength” recommender systems, such as the

ones deployed at Amazon [61], MovieLens [67], and VERSIFI Technologies (formerly

 24

AdapiveInfo.com) [14]. However, both collaborative and content-based methods have certain

limitations described earlier in this section. Moreover, in order to provide better

recommendations and to be able to use recommender systems in arguably more complex types of

applications, such as recommending vacations or certain types of financial services, most of the

methods reviewed in this section would need significant extensions. For example, even for a

traditional movie recommendation application, [3] showed that, by extending the traditional

memory-based collaborative filtering approach to take into the consideration the contextual

information, such as when, where and with whom a movie is seen, the resulting recommender

system could outperform the pure traditional collaborative filtering method. Many real-life

recommendation applications, including several business applications, such as the ones described

above, are arguably more complex than a movie recommender system, and would require taking

more factors into the recommendation consideration. Therefore, the need to develop more

advanced recommendation methods is even more pressing for such types of applications. In the

next section, we review various ways to extend recommendation methods in order to support

more complex types of recommendation applications.

3. Extending Capabilities of Recommender Systems

Recommender systems, as described in Section 2 and summarized in Table 2, can be extended in

several ways that include improving the understanding of users and items, incorporating the

contextual information into the recommendation process, supporting multi-criteria ratings, and

providing more flexible and less intrusive types of recommendations. Such more comprehensive

models of recommender systems can provide better recommendation capabilities. In the

remainder of this section we describe the proposed extensions and also identify various research

opportunities for developing them.

 25

Recommendation Technique Recommendation
Approach Heuristic-based Model-based

Content-based Commonly used techniques:
• TF-IDF (information retrieval)
• Clustering

Representative research examples:
• Lang 1995
• Balabanovic & Shoham 1997
• Pazzani & Billsus 1997

Commonly used techniques:
• Bayesian classifiers
• Clustering
• Decision trees
• Artificial neural networks

Representative research examples:
• Pazzani & Billsus 1997
• Mooney et al. 1998
• Mooney & Roy 1999
• Billsus & Pazzani 1999, 2000
• Zhang et al. 2002

Collaborative Commonly used techniques:
• Nearest neighbor (cosine, correlation)
• Clustering
• Graph theory

Representative research examples:
• Resnick et al. 1994
• Hill et al. 1995
• Shardanand & Maes 1995
• Breese et al. 1998
• Nakamura & Abe 1998
• Aggarwal et al. 1999
• Delgado & Ishii 1999
• Pennock & Horwitz 1999
• Sarwar et al. 2001

Commonly used techniques:
• Bayesian networks
• Clustering
• Artificial neural networks
• Linear regression
• Probablistic models

Representative research examples:
• Billsus & Pazzani 1998
• Breese et al. 1998
• Ungar & Foster 1998
• Chien & George 1999
• Getoor & Sahami 1999
• Pennock & Horwitz 1999
• Goldberg et al. 2001
• Kumar et al. 2001
• Pavlov & Pennock 2002
• Shani et al. 2002
• Yu et al. 2002, 2004
• Hofmann 2003, 2004
• Marlin 2003
• Si & Jin 2003

Hybrid Combining content-based and collaborative
components using:

• Linear combination of predicted ratings
• Various voting schemes
• Incorporating one component as a part of

the heuristic for the other
Representative research examples:

• Balabanovic & Shoham 1997
• Claypool et al. 1999
• Good et al. 1999
• Pazzani 1999
• Billsus & Pazzani 2000
• Tran & Cohen 2000
• Melville et al. 2002

Combining content-based and collaborative
components by:

• Incorporating one component as a
part of the model for the other

• Building one unifying model
Representative research examples:

• Basu et al. 1998
• Condliff et al. 1999
• Soboroff & Nicholas 1999
• Ansari et al. 2000
• Popescul et al. 2001
• Schein et al. 2002

Table 2: Classification of recommender systems research.

3.1. Comprehensive understanding of users and items

As was pointed out in [2, 8, 54, 105], most of the recommendation methods produce ratings that

are based on a limited understanding of users and items as captured by user and item profiles and

do not take full advantage of the information in the user's transactional histories and other

 26

available data. For example, classical collaborative filtering methods [45, 86, 97] do not use user

and item profiles at all for the recommendation purposes and rely exclusively on the ratings

information to make recommendations. Although there has been some progress made on

incorporating user and item profiles into some of the methods since the earlier days of

recommender systems [13, 76, 79], still these profiles tend to be quite simple and do not utilize

some of the more advanced profiling techniques. In addition to using traditional profile features,

such as keywords and simple user demographics [69, 77], more advanced profiling techniques

based on data mining rules [1, 34], sequences [63], and signatures [26] that describe user’s

interests can be used to build user profiles. Also, in addition to using the traditional item profile

features, such as keywords [9, 76], similar advanced profiling techniques can also be used to

build comprehensive item profiles. With respect to recommender systems, advanced profiling

techniques that are based on data mining have been used mainly in the context of Web usage

analysis [59, 68, 110], i.e., to discover navigational Web usage patterns (i.e., page view

sequences) of users in order to provide better Web site recommendations; however, such

techniques have not been widely adopted in rating-based recommender systems.

Once user and item profiles are built, the most general ratings estimation function can be

defined in terms of these profiles and the previously specified ratings as follows. Let profile of

user i be defined as a vector of p features, i.e., 1(, ,)i i ipc a a=
G … . Also, let profile of item j be

defined as a vector of r features, i.e., 1(, ,)j j jrs b b=
G … . We deliberately did not define precisely

the meanings of features aij and bkl because they can mean different concepts in different

applications, such as numbers, categories, rules, sequences, etc. Also, let cG be a vector of all

user profiles, i.e., 1(, ,)mc c c=
G G G… , and let sG be a vector of all item profiles, i.e., 1(, ,)ns s s=

G G G… .

Then the most general rating estimation procedure can be defined as

 27

, if
(, ,), if

ij ij
ij

ij ij

r r
r

u R c s r
≠ ∅⎧

′ = ⎨ = ∅⎩
G G (16)

that estimates each unknown rating ' (, ,)ij ijr u R c s=
G G in terms of known ratings R={ ijr ≠ ∅ }, user

profiles cG , and item profiles sG . We can use various methods for estimating utility function iju ,

including various heuristics, nearest neighbor classifiers, decision trees, spline methods, radial

basis functions, regressions, and neural networks. Moreover, we would like to point out that

equation (16) presents the most general model that depends on a whole range of inputs, including

the characteristics of user i (icG) and possibly other users 1(, ,)mc c c=
G G G… , characteristics of item j

(jsG), and possibly other items 1(, ,)ns s s=
G G G… , ratings (preferences) Ri expressed by user i and

ratings (preferences) expressed by all other users R={rij ≠ ∅}. Therefore, function uij clearly

subsumes collaborative, content-based and hybrid methods discussed in Section 2. However,

most of the existing recommender systems make function uij dependent only on a (small) subset

of the whole input space R, cG , and sG . For example, function uij for traditional memory-based

collaborative filtering methods does not depend on inputs cG and sG and restricts R only to

column Rj and usually only to the set of N nearest neighbors rij for column Rj.4

 An interesting research problem would be to extend the attribute-based profiles, as

defined by cG and sG , to utilize more advanced profiling techniques described above, such as

rule-, sequence-, and signature-based methods.

3.2. Extensions for Model-Based Recommendation Techniques

As discussed in Section 2, some of the model-based approaches provide rigorous rating

estimation methods utilizing various statistical and machine learning techniques. However, other

areas of mathematics and computer science, such as mathematical approximation theory [16, 73,

4 Actually, the situation is a little more complicated than this because estimation of nearest neighbors may involve
other values of matrix R for some of the collaborative filtering methods.

 28

81], can also contribute to developing better rating estimation methods defined by equation (16).

One example of an approximation-based approach to defining function uij in (16) constitutes

radial basis functions [16, 30, 92] that are defined as follows. Given a set of points

1{ , , }mX x x= … (where N
ix ∈\) and the values of an unknown function f (e.g., the rating

function) at these points, i.e., 1()f x , …, ()mf x , a radial basis function ,f Xr estimates the values

of f in the whole N\ , given , () ()f X i ir x f x= for all 1, ,i m= … , as

, 1
() ()m

f X i ii
r x x xα φ

=
= −∑ (17)

where 1{ , , }mα α… are coefficients from \ , x is a norm (e.g., L2) and φ is a positive definite

function, i.e., a function satisfying the condition

1 1
() 0m m

i j i ji j
x xα α φ

= =
− >∑ ∑ (18)

for all distinct points 1x , …, mx in N\ and all the coefficients 1α , …, mα from \ . Then a well-

known theorem [92] states that if φ is a positive definite function then there exists a unique

function ,f Xr of the form (17) satisfying the conditions , () ()f X i ir x f x= for all 1, ,i m= … . Some

popular examples of positive definite functions φ are:

1. ()r r βφ = , where 0β > is a positive odd number;
2. () log()kr r rφ = , where k ∈` (thin-plate splines);

3.
2

() rr e αφ −= where 0α > (Gaussian).

One of the advantages of radial basis functions is that they have been extensively studied in

the approximation theory, and their theoretical properties and utilization of radial basis functions

in many practical applications have been understood very well [16, 92]. Therefore, it should be

interesting to apply them for estimating unknown ratings in recommender systems.

One caveat with using radial basis functions in recommender systems, though, is that the

 29

recommendation space c s×G G does not usually constitute an N-dimensional Euclidean space N\ .

Therefore, one research challenge is to extend radial basis methods from the real numbers to

other domains and apply them to recommender systems problems. The applicability of other

approximation methods for estimating iju in (16) constitutes another interesting research topic.

3.3. Multidimensionality of recommendations

Current generation of recommender systems operates in the two-dimensional User×Item space.

That is, they make their recommendations based only on the user and item information and do

not take into the consideration additional contextual information that may be crucial in some

applications. However, in many situations the utility of a certain product to a user may depend

significantly on time (e.g., the time of the year, such as season or month, or the day of the week).

It may also depend on the person(s) with whom the product will be consumed or shared and

under which circumstances. In such situations it may not be sufficient to simply recommend

items to users; the recommender system must take additional contextual information, such as

time, place, and the company of a user, into the consideration when recommending a product.

For example, when recommending a vacation package, the system should also consider the time

of the year, with whom the user plans to travel, traveling conditions and restrictions at that time,

and other contextual information. As another example, a user can have significantly different

preferences for the types of movies she wants to see when she is going out to a movie theater

with a boyfriend on a Saturday night as opposed to watching a rental movie at home with her

parents on a Wednesday evening. As was argued in [2], it is important to extend traditional two-

dimensional User×Item recommendation methods to multi-dimensional settings. In addition,

[43] argued that the inclusion of the knowledge about user’s task into the recommendation

algorithm in certain applications can lead to better recommendations.

 30

In order to take into the consideration the contextual information, [2] propose to define

the utility (or ratings) function over a multidimensional space 1 nD D× ×… (as opposed to the

traditional 2-dimensional User×Item space) as

 1: nu D D R× × →… (19)

Then a recommendation problem is defined by selecting certain “what” dimensions 1, ,i ikD D…

(k n<) and certain “for whom” dimensions 1, ,j jlD D… (l n<) that do not overlap, i.e.,

1 1{ , , } { , , }i ik j jlD D D D =∅… ∩ … , and recommending for each tuple 1 1(, ,)j jl j jld d D D∈ × ×… …

the tuple 1 1(, ,)i ik i ikd d D D∈ × ×… … that maximizes the utility 1(, ,)nu d d… , i.e.,

1 1
1 1

1 1 1 1
(, ,)
(, ,) (, ,)

(, ,) , (, ,) arg max (, ,)
i ik i ik
j jl j jl

j jl j jl i ik n
d d D D
d d d d

d d D D d d u d d
′ ′ ∈ × ×
′ ′ =

′ ′∀ ∈ × × =
… …
… …

… … … … (20)

For example, in the case of a movie recommender system one needs to consider not only

characteristics of the movie d1 and of the person who wants to see the movie d2, but also such

contextual information as (a) d3: where and how the movie will be seen (e.g., in the movie

theater, at home on TV, on video or DVD), (b) d4: with whom the movie will be seen (e.g.,

alone, with girlfriend/boyfriend, friends, parents, etc.), and (c) d5: when will the movie be seen

(e.g., on weekdays or weekends, in the morning/afternoon/evening, during the opening night,

etc.). As discussed earlier, each of the components d1, d2, d3, d4, d5 can be defined as a vector of

its characteristics, and the overall utility function u(d1, d2, d3, d4, d5) can be quite complex and

take into consideration various interaction effects among vectors d1, d2, d3, d4, d5.

As was argued in [2, 3], many of the two-dimensional recommendation algorithms cannot

be directly extended to the multidimensional case. Furthermore, [3] proposes a reduction-based

recommendation approach which uses only the ratings that pertain to the context of the user-

specified criteria in which a recommendation is made. For example, to recommend a movie to a

 31

person who wants to see it in a movie theater on a Saturday night, the reduction-based approach

would use only the available ratings of the movies seen in the movie theaters over the weekends,

if it is determined from the data that the place and the time of the week dimensions affect the

moviegoers’ behavior. By selecting only the ratings relevant to a recommendation context, the

reduction-based approach projects the multi-dimensional cube of ratings on the two primary

User and Item dimensions. Then any standard two-dimensional recommendation method

described in Section 2 can be used to produce a recommendation. Since these recommendations

are based only on the context-specific set of ratings, this amounts to building a local model

producing context-specific recommendations.

Another possible approach to producing multi-dimensional recommendations would be to

deploy the hierarchical Bayesian method presented in [5], which can be extended from 2- to

multi-dimensional case as follows. Instead of considering the two-dimensional case, as defined

in (15), where user characteristics d1 are defined with vector zi and item characteristics d2 with

vector wj, we can also add contextual dimensions d3, …, dn, where 1(, ,)
ii i ixd d d= … is a vector

of characteristics for dimension Di. Then the rating function r = u(d1, d2, …, dn) is extended

from (15) to the linear combination of d1, d2, …, dn and also includes interaction effects among

these dimensions (i.e., interaction effects, as defined by matrix { ijx } in (15), should be extended

to include other dimensions). One of the research challenges is to make these extensions

scalable for large values of n.

3.4. Multi-criteria ratings

Most of the current recommender systems deal with single-criterion ratings, such as ratings of

movies and books. However, in some applications, such as restaurant recommenders, it is

crucial to incorporate multi-criteria ratings into recommendation methods. For example, many

 32

restaurant guides, such as Zagat’s Guide, provide three criteria for restaurant ratings: food, decor

and service. Although multi-criteria ratings have not yet been examined in the recommender

systems literature, they have been extensively studied in the Operations Research community

[33, 102]. Typical solutions to the multi-criteria optimization problems include (a) finding

Pareto optimal solutions, (b) taking a linear combination of multiple criteria and reducing the

problem to a single-criterion optimization problem, (c) optimizing the most important criterion

and converting other criteria to constraints, (d) consecutively optimizing one criterion at a time,

converting an optimal solution to constraint(s) and repeating the process for other criteria. An

example of the latter approach is the method of successive concessions [102].

To illustrate how some of these methods can be used in recommender systems, consider

the application of approach (c) to the problem of recommending restaurants r to user c based on

the user’s criteria of food quality ()cf r , décor ()cd r , and service ()cs r . We can take food

quality ()cf r to be the primary criterion and use others as constraints, i.e., we want to find

restaurants r that maximize ()cf r , subject to the constraints ()c cd r α> and ()c cs r β> , where cα

and cβ are minimal ratings for décor and service (e.g., user c will not go to any restaurant having

décor and service ratings below 10, out of possible 30, regardless of the quality of food there).

This problem is complicated by the fact that we usually will not have the user’s decor ()cd r and

service ()cs r ratings for all the restaurants. Then the task of a recommender system is to

estimate unknown ratings ()cd r′ and ()cs r′ , e.g., using the rating estimation methods described in

Section 2, and find all the restaurants r satisfying constraints ()c cd r α′ > and ()c cs r β′ > . Once

we find all the restaurants satisfying the constraints with these estimated ratings, we can use

those restaurants in search for the maximum of ()cf r . However, as with décor and service

 33

ratings, we might not have the user’s food ratings ()cf r for all such restaurants and, thus, will

also need to use rating estimation procedure for ()cf r before making any recommendations.

We believe that the problem of finding Pareto-optimal solution set and the iterative

method of consecutive single criterion optimizations for multi-criteria recommendation problems

mentioned above should also constitute interesting and challenging problems.

3.5. Non-intrusiveness

Many recommender systems are intrusive in the sense that they require explicit feedback from

the user and often at a significant level of user involvement. For example, before recommending

any newsgroup articles, the system needs to acquire ratings of previously read articles, and often

many of them. Since it is impractical to elicit many ratings of these articles from the user, some

recommender systems use non-intrusive rating determination methods where certain proxies are

used to estimate real ratings. For example, the amount of time a user spends reading a

newsgroup article can serve as a proxy of the article’s rating given by this user. Some non-

intrusive methods of getting user feedback are presented in [18, 53, 66, 74, 94]. However, non-

intrusive ratings (such as time spent reading an article) are often inaccurate and cannot fully

replace explicit ratings provided by the user. Therefore, the problem of minimizing intrusiveness

while maintaining certain levels of accuracy of recommendations needs to be addressed by the

recommender systems researchers.

One way to explore the intrusiveness problem is to determine an optimal number of

ratings the system should ask from a new user. For example, before recommending any movies,

MovieLens.org first asks the user to rate a predefined number of movies (e.g., 20). This request

incurs certain costs on the end-user that can be modeled in various ways, the simplest model

being a fixed-cost model (i.e., the cost of rating each movie is C and the cost of rating n movies

 34

is C⋅n). Then the intrusiveness problem can be formulated as an optimization problem that tries

to find an optimal number of initial rating requests n as follows. Each additional rating supplied

by the user increases the accuracy of recommendations (or any other effectiveness measure) and,

therefore, results in certain benefits for the user. One interesting intrusiveness-related research

problem would be to develop formal models for defining and measuring benefit B(n) of

supplying n initial ratings in terms of the increased accuracy of predictions based on these

ratings. Once it is known how to measure benefits B(n) (e.g., by measuring the predictive

accuracy of a recommender system), we need to determine an optimal number of initial ratings n

that maximizes expression B(n) – C⋅n. Clearly, optimal value of n is reached when marginal

benefits are equal to marginal costs, i.e., when ∆B(n) = C. The optimal solution should exist

under the assumption that B(n) is a monotonically increasing function in n with decreasing

marginal benefits ∆B(n) that asymptotically converge to zero.

Another interesting research opportunity lies in developing marginal cost models that are

more advanced than the fixed-cost model described above and that can potentially include

cost/benefit analysis of using both implicit and explicit ratings in a recommender system.

Finally, the issue of incrementally selecting good training data for modeling purposes is

the problem of active learning, which is a fairly well-studied area in the machine learning

literature, and numerous approaches have been proposed to addressing this problem [23, 24, 36,

58]. We believe that applying active learning methods to address the non-intrusiveness issue

constitutes another interesting research opportunity.

3.6. Flexibility

Most of the recommendation methods are inflexible in the sense that they are “hard-wired” into

the systems by the vendors and therefore support only a predefined and fixed set of

recommendations. Therefore, the end-user cannot customize recommendations according to his

 35

or her needs in real time. This problem has been identified in [2], and Recommendation Query

Language (RQL) has been proposed to address it [2]. RQL is an SQL-like language for

expressing flexible user-specified recommendation requests. For example, the request

“recommend to each user from New York the best three movies that are longer than two hours”

can be expressed in RQL as:

 RECOMMEND Movie TO User
 BASED ON Rating
 SHOW TOP 3
 FROM MovieRecommender
 WHERE Movie.Length > 120 AND User.City = “New York”.

Also, most of the recommender systems recommend only individual items to individual

users and do not deal with aggregation. However, it is important to be able to provide

aggregated recommendations in a number of applications, such as recommend brands or

categories of products to certain segments of users. For example, a travel-related recommender

system may want to recommend vacations in Florida (category of products) to the undergraduate

students from the Northeast (user segment) during the spring break. One way to support

aggregated recommendations is by utilizing the OLAP-based approach [19] to multidimensional

recommendations. OLAP-based systems naturally support aggregation hierarchies, and the

initial approaches to deploying OLAP-based methods in recommender systems are presented in

[2, 3]. However, more work is required to develop a more comprehensive understanding of how

to use the OLAP approach in recommender systems, and this constitutes an interesting and

challenging research problem.

3.7. Effectiveness of recommendations

The problem of developing good metrics to measure effectiveness of recommendations has been

extensively addressed in the recommender systems literature. Some examples of this work

include [41, 44, 69, 107]. In most of the recommender systems literature, the performance

 36

evaluation of recommendation algorithms is usually done in terms of the coverage and accuracy

metrics. Coverage measures the percentage of items for which a recommender system is capable

of making predictions [41]. Accuracy measures can be either statistical or decision-support [41].

Statistical accuracy metrics mainly compare the estimated ratings (e.g., as defined in (16))

against the actual ratings R in the User×Item matrix, and include Mean Absolute Error (MAE),

root mean squared error, and correlation between predictions and ratings. Decision-support

measures determine how well a recommender system can make predictions of high-relevance

items (i.e., items that would be rated highly by the user). They include classical IR measures of

precision (the percentage of truly “high” ratings among those that were predicted to be “high” by

the recommender system), recall (the percentage of correctly predicted “high” ratings among all

the ratings known to be “high”), F-measure (a harmonic mean of precision and recall), and

Receiver Operating Characteristic (ROC) measure demonstrating the tradeoff between true

positive and false positive rates in recommender systems [41].

Although popular, these empirical evaluation measures have certain limitations. One

limitation is that these measures are typically performed on test data that the users chose to rate.

However, items that users choose to rate are likely to constitute a skewed sample, e.g., users may

rate mostly the items that they like. In other words, the empirical evaluation results typically

only show how accurate the system is on items the user decided to rate, whereas the ability of the

system to properly evaluate a random item (which it should be able to do during its normal real-

life use) is not tested. Understandably, it is expensive and time-consuming to conduct controlled

experiments with users in the recommender systems settings, therefore, the experiments that test

recommendation quality on an unbiased random sample are rare, e.g., [69]. However, the high-

quality experiments are necessary in order to truly understand the benefits and limitations of the

proposed recommendation techniques.

 37

In addition, although crucial for measuring accuracy of recommendations, the technical

measures mentioned earlier often do not capture adequately “usefulness” and “quality” of

recommendations. For example, as [107] observe for a supermarket application, recommending

obvious items (such as milk or bread) that the consumer will buy anyway will produce high

accuracy rates; however, it will not be very helpful to the consumer. Therefore, it is also

important to develop economics-oriented measures that capture the business value of

recommendations, such as return on investments (ROI) and customer lifetime value (LTV)

measures [32, 88, 95]. Developing and studying the measures that would remedy the limitations

described in this section constitutes an interesting and important research topic.

3.8. Other Extensions

Other important research issues that have been explored in recommender systems literature

include explainability [12, 42], trustworthiness [28], scalability [4, 39, 91, 93], and privacy [82,

93] issues of recommender systems. However, we will not review this work and will not discuss

research opportunities in these areas because of the space limitation.

4. Conclusions

Recommender systems made a significant progress over the last decade when numerous content-

based, collaborative and hybrid methods were proposed and several “industrial-strength” systems

have been developed. However, despite all these advances, the current generation of

recommender systems surveyed in this paper still requires further improvements to make

recommendation methods more effective in a broader range of applications. In this paper, we

reviewed various limitations of the current recommendation methods and discussed possible

extensions that can provide better recommendation capabilities. These extensions include,

among others, the improved modeling of users and items, incorporation of the contextual

information into the recommendation process, support for multi-criteria ratings, and provision of

 38

a more flexible and less intrusive recommendation process. We hope that the issues presented in

this paper would advance the discussion in the recommender systems community about the next

generation of recommendation technologies.

References

1. Adomavicius, G. and A. Tuzhilin. Expert-driven validation of rule-based user models in
personalization applications. Data Mining and Knowledge Discovery, 5(1/2):33-58, 2001a.

2. Adomavicius, G. and A. Tuzhilin. Multidimensional recommender systems: a data
warehousing approach. In Proc. of the 2nd Intl. Workshop on Electronic Commerce
(WELCOM’01). Lecture Notes in Computer Science, vol. 2232, Springer, 2001b.

3. Adomavicius, G., R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating Contextual
Information in Recommender Systems Using a Multidimensional Approach. ACM
Transactions on Information Systems, 23(1), January 2005.

4. Aggarwal, C. C., J. L. Wolf, K-L. Wu, and P. S. Yu. Horting hatches an egg: A new graph-
theoretic approach to collaborative filtering. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, August 1999.

5. Ansari, A., S. Essegaier, and R. Kohli. Internet recommendations systems. Journal of
Marketing Research, pages 363-375, August 2000.

6. Armstrong, J. S. Principles of Forecasting – A Handbook for Researchers and
Practitioners, Kluwer Academic Publishers, 2001.

7. Baeza-Yates, R., B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.
8. Balabanovic, M. and Y. Shoham. Fab: Content-based, collaborative recommendation.

Communications of the ACM, 40(3):66-72, 1997.
9. Basu, C., H. Hirsh, and W. Cohen. Recommendation as classification: Using social and

content-based information in recommendation. In Recommender Systems. Papers from
1998 Workshop. Technical Report WS-98-08. AAAI Press, 1998.

10. Belkin, N. and B. Croft. Information filtering and information retrieval. Communications of
the ACM, 35(12):29-37, 1992.

11. Billsus, D. and M. Pazzani. Learning collaborative information filters. In International
Conference on Machine Learning, Morgan Kaufmann Publishers, 1998.

12. Billsus, D. and M. Pazzani. A Personal News Agent That Talks, Learns and Explains. In
Proceedings of the Third Annual Conference on Autonomous Agents, 1999.

13. Billsus, D. and M. Pazzani. User modeling for adaptive news access. User Modeling and
User-Adapted Interaction, 10(2-3):147-180, 2000.

14. Billsus, D., C. A. Brunk, C. Evans, B. Gladish, and M. Pazzani. Adaptive interfaces for
ubiquitous web access. Commnications of the ACM, 45(5):34-38, 2002.

15. Breese, J. S., D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, WI, July 1998.

16. Buhmann, M. D. Approximation and interpolation with radial functions. In Multivariate
Approximation and Applications. Eds. N. Dyn, D. Leviatan, D. Levin, and A. Pinkus.
Cambridge University Press, 2001.

17. Burke, R. Knowledge-based recommender systems. In A. Kent (ed.), Encyclopedia of
Library and Information Systems. Volume 69, Supplement 32. Marcel Dekker, 2000.

 39

18. Caglayan, A., M. Snorrason, J. Jacoby, J. Mazzu, R. Jones, and K. Kumar. Learn Sesame –
a learning agent engine. Applied Artificial Intelligence, 11:393-412, 1997.

19. Chaudury, S. and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1):65-74, 1997.

20. Chien, Y-H. and E. I. George. A bayesian model for collaborative filtering. In Proc. of the
7th International Workshop on Artificial Intelligence and Statistics, 1999.

21. Claypool, M., A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining
content-based and collaborative filters in an online newspaper. In ACM SIGIR'99.
Workshop on Recommender Systems: Algorithms and Evaluation, August 1999.

22. Cohen, W. W., R. E. Schapire, and Y. Singer. Learning to order things. Journal of Articial
Intelligence Research, 10:243-270, 1999.

23. Cohn, D., L. Atlas, and R. Ladner. Improving Generalization with Active Learning.
Machine Learning, 15(2):201-221, 1994.

24. Cohn, D., Z. Ghahramani, and M. Jordan. Active Learning with Statistical Models.
Journal of Artificial Intelligence Research, 4:129-145, 1996.

25. Condliff, M., D. Lewis, D. Madigan, and C. Posse. Bayesian mixed-effects models for
recommender systems. In ACM SIGIR'99 Workshop on Recommender Systems: Algorithms
and Evaluation, August 1999.

26. Cortes, C., K. Fisher, D. Pregibon, A. Rogers, and F. Smith. Hancock: a language for
extracting signatures from data streams. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2000.

27. Delgado, J. and N. Ishii. Memory-based weighted-majority prediction for recommender
systems. In ACM SIGIR'99 Workshop on Recommender Systems: Algorithms and
Evaluation, 1999.

28. Dellarocas, C. The Digitization of Word of Mouth: Promise and Challenges of Online
Feedback Mechanisms. Management Science, 49(10):1407-1424, 2003.

29. Deshpande, M. and G. Karypis. Item-Based Top-N Recommendation Algorithms. ACM
Transactions on Information Systems, 22(1):143-177, 2004.

30. Duchon, J. Splines minimizing rotation-invariate semi-norms in Sobolev spaces. In
Constructive Theory of Functions of Several Variables, ed. W. Schempp & Zeller, pp. 85-
100, Springer, 1979.

31. Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification, John Wiley & Sons, 2001.
32. Dwyer, F. R. Customer Lifetime Valuation to Support Marketing Decision Making.

Journal of Direct Marketing, Vol 3(4), 1989.
33. Ehrgott, M. Multicriteria Optimization. Springer Verlag, September 2000.
34. Fawcett, T., and F. Provost. Combining data mining and machine learning for efficient

user profiling. In Proceedings of the Second International Conference On Knowledge
Discovery and Data Mining (KDD-96), 1996.

35. Freund, Y., R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. In Proc. of the 15th Intl. Conference on Machine Learning, 1998.

36. Freund, Y., H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by
committee algorithm. Machine Learning, 28(2-3):133-168, 1997.

37. Getoor, L. and M. Sahami. Using probabilistic relational models for collaborative filtering.
In Workshop on Web Usage Analysis and User Profiling (WEBKDD'99), August 1999.

38. Goldberg, D., D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave
an information tapestry. Communications of the ACM, 35(12):61-70, 1992.

39. Goldberg, K., T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time

 40

collaborative filtering algorithm. Information Retrieval Journal, 4(2):133-151, July 2001.
40. Good, N., J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. L. Herlocker, and J.

Riedl. Combining Collaborative Filtering with Personal Agents for Better
Recommendations. In Proceedings of the Conference of the American Association of
Artificial Intelligence (AAAI-99), pp. 439-446, Orlando, Florida, July 1999,

41. Herlocker, J. L., J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. In Proc. of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’99). 1999.

42. Herlocker, J. L., J. A. Konstan, and J. Riedl. Explaining collaborative filtering
recommendations. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work, 2000.

43. Herlocker, J. L. and J. A. Konstan. Content-Independent Task-Focused Recommendation.
IEEE Internet Computing, 5(6):40-47, 2001.

44. Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating Collaborative
Filtering Recommender Systems. ACM Transactions on Information Systems, 22(1):5-53,
2004.

45. Hill, W., L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating choices
in a virtual community of use. In Proceedings of CHI’95.

46. Hofmann, T. Probabilistic Latent Semantic Analysis. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pp. 289-296, 1999.

47. Hofmann, T. Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis.
In Proc. of the 26th Annual International ACM SIGIR Conference, Toronto, Canada, 2003.

48. Hofmann, T. Latent Semantic Models for Collaborative Filtering. ACM Transactions on
Information Systems, 22(1):89-115, 2004.

49. Huang, Z., H. Chen, and D. Zeng. Applying Associative Retrieval Techniques to Alleviate
the Sparsity Problem in Collaborative Filtering. ACM Transactions on Information
Systems, 22(1):116-142, 2004.

50. Hull, D. A. The TREC-7 Filtering Track: Description and Analysis. In Proceedings of the
7th Text Retrieval Conference (TREC-7), pp., 1999.

51. Jin, R., L. Si, and C. Zhai. Preference-based Graphic Models for Collaborative Filtering.
In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence (UAI 2003),
Acapulco, Mexico, August 2003a.

52. Jin, R., L. Si, C. Zhai, and J. Callan. Collaborative Filtering with Decoupled Models for
Preferences and Ratings. In Proc. of the 12th International Conference on Information and
Knowledge Management (CIKM 2003), New Orleans, LA, November 2003b.

53. Konstan, J. A., B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl.
GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM,
40(3):77-87, 1997.

54. Konstan, J. A., J. Riedl, A. Borchers, and J. L. Herlocker. Recommender systems: a
GroupLens perspective. In Recommender Systems. Papers from 1998 Workshop. Technical
Report WS-98-08. AAAI Press, 1998.

55. Kumar, R., P. Raghavan, S. Rajagopalan, and A. Tomkins. Recommendation Systems: A
Probabilistic Analysis. Journal of Computer and System Sciences, 63(1):42-61, 2001.

56. Lang, K. Newsweeder: Learning to filter netnews. In Proceedings of the 12th
International Conference on Machine Learning, 1995.

57. Lee, W. S. Collaborative learning for recommender systems. In Proccedings of the
International Conference on Machine Learning, 2001.

 41

58. Lewis, D. and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Proceedings of 11th International Conference on Machine Learning, pp. 148-156, 1994.

59. Li, J. and O. R. Zaïane. Combining Usage, Content and Structure Data to Improve Web
Site Recommendation. In Proceedings of the 5th International Conference on Electronic
Commerce and Web Technologies (EC-Web 04), pp. 305-315, Zaragoza, Spain, 2004.

60. Lilien, G. L., P. Kotler, K. S. Moorthy. Marketing Models, Prentice Hall, 1992.
61. Linden, G., B. Smith, and J. York. Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing, Jan.-Feb. 2003.
62. Littlestone, N. and M. Warmuth. The Weighted Majority Algorithm. Information and

Computation, 108(2):212-261, 1994.
63. Mannila, H., H. Toivonen, and A. I. Verkamo. Discovering Frequent Episodes in

Sequences. In Proceedings of the First International Conference on Knowledge Discovery
and Data Mining (KDD-95), 1995.

64. Marlin, B. Modeling User Rating Profiles for Collaborative Filtering. In Proceedings of
the 17th Annual Conference on Neural Information Processing Systems (NIPS’03), 2003.

65. Melville, P., R. J. Mooney, and R. Nagarajan. Content-Boosted Collaborative Filtering for
Improved Recommendations. In Proceedings of the Eighteenth National Conference on
Artificial Intelligence, Edmonton, Canada, 2002.

66. Middleton, S. E., N. R. Shadbolt, and D. C. de Roure. Ontological User Profiling in
Recommender Systems. ACM Transactions on Information Systems, 22(1):54-88, 2004.

67. Miller, B. N., I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl. MovieLens Unplugged:
Experiences with an Occasionally Connected Recommender System. In Proceedings of the
International Conference on Intelligent User Interfaces, Miami, Florida, 2003.

68. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Discovery and Evaluation of Aggregate
Usage Profiles for Web Personalization. Data Mining and Knowledge Discovery, 6(1):61-
82, 2002.

69. Mooney, R. J. and L. Roy Content-based book recommending using learning for text
categorization. In ACM SIGIR'99. Workshop on Recommender Systems: Algorithms and
Evaluation, 1999.

70. Mooney, R. J., P. N. Bennett, and L. Roy. Book recommending using text categorization
with extracted information. In Recommender Systems. Papers from 1998 Workshop.
Technical Report WS-98-08. AAAI Press, 1998.

71. Murthi, B. P. S. and S. Sarkar. The Role of the Management Sciences in Research on
Personalization. Management Science, 49(10):1344-1362, 2003.

72. Nakamura, A. and N. Abe. Collaborative filtering using weighted majority prediction
algorithms. In Proc. of the 15th International Conference on Machine Learning, 1998.

73. Nurnberger, G. Approximation by Spline Functions. Springer-Verlag, 1989.
74. Oard, D. W. and J. Kim. Implicit feedback for recommender systems. In Recommender

Systems. Papers from 1998 Workshop. Technical Report WS-98-08. AAAI Press, 1998.
75. Pavlov, D. and D. Pennock. A Maximum Entropy Approach To Collaborative Filtering in

Dynamic, Sparse, High-Dimensional Domains. In Proceedings of the 16th Annual
Conference on Neural Information Processing Systems (NIPS’02), 2002.

76. Pazzani, M. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, pages 393-408, December 1999.

77. Pazzani, M. and D. Billsus. Learning and revising user profiles: The identification of
interesting web sites. Machine Learning, 27:313-331, 1997.

78. Peddy, C. C., and D. Armentrout. Building Solutions with Microsoft Commerce Server

 42

2002. Microsoft Press, 2003.
79. Pennock, D. M. and E. Horvitz. Collaborative filtering by personality diagnosis: A hybrid

memory- and model-based approach. In IJCAI'99 Workshop: Machine Learning for
Information Filtering, August 1999.

80. Popescul, A., L. H. Ungar, D. M. Pennock, and S. Lawrence. Probabilistic Models for
Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments.
In Proc. of the 17th Conf. on Uncertainty in Artificial Intelligence, Seattle, WA, 2001.

81. Powell, M. J. D. Approximation Theory and Methods, Cambridge University Press, 1981.
82. Ramakrishnan, N., B. J. Keller, B. J. Mirza, A. Y. Grama, and G. Karypis. Privacy Risks

in Recommender Systems. IEEE Internet Computing, 5(6):54-62, 2001.
83. Rashid, A. M., I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J. Riedl.

Getting to Know You: Learning New User Preferences in Recommender Systems. In
Proceedings of the International Conference on Intelligent User Interfaces, 2002.

84. Robertson S. and S. Walker. Threshold Setting in Adaptive Filtering. Journal of
Documentation, 56:312-331, 2000.

85. Rocchio, J. J. Relevance Feedback in Information Retrieval. SMART Retrieval System –
Experiments in Automatic Document Processing, G. Salton ed., PrenticeHall, Ch. 14, 1971.

86. Resnick, P., N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl. GroupLens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 Computer
Supported Cooperative Work Conference, 1994.

87. Rich, E. User Modeling via Stereotypes. Cognitive Science, 3(4):329-354, 1979.
88. Rosset, S., E. Neumann, U. Eick, N. Vatnik, and Y. Idan. Customer Lifetime Value

Modeling and Its Use for Customer Retention Planning. In Proc. of the 8th ACM SIGKDD
International Conf. on Knowledge Discovery and Data Mining (KDD-2002), July 2002.

89. Salton, G. Automatic Text Processing. Addison-Wesley, 1989.
90. Sarwar B., G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in

recommender systems – a case study. In Proc. of the ACM WebKDD Workshop, 2000.
91. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl. Item-based Collaborative Filtering

Recommendation Algorithms. In Proc. of the 10th International WWW Conference, 2001.
92. Schaback, R. and H. Wendland. Characterization and construction of radial basis

functions. In Multivariate Approximation and Applications. Eds. N. Dyn, D. Leviatan, D.
Levin and A. Pinkus. Cambridge University Press, 2001.

93. Schafer, J. B., J. A. Konstan, and J. Riedl. E-commerce recommendation applications.
Data Mining and Knowledge Discovery, 5(1/2):115-153, 2001.

94. Schein, A. I., A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for
cold-start recommendations. In Proc. of the 25th Annual Intl. ACM SIGIR Conf., 2002.

95. Schmittlein, D. C., D. G. Morrison, and R. Colombo. Counting Your Customers: Who are
they and what will they do next? Management Science, Vol. 33(1), 1987.

96. Shani, G., R. Brafman, and D. Heckerman. An MDP-based recommender system. In Proc.
of Eighteenth Conference on Uncertainty in Artificial Intelligence, August 2002.

97. Shardanand, U. and P. Maes. Social information filtering: Algorithms for automating
‘word of mouth’. In Proc. of the Conf. on Human Factors in Computing Systems, 1995.

98. Sheth, B. and Maes P. Evolving agents for personalized information filtering. In
Proceedings of the 9th IEEE Conference on Artificial Intelligence for Applications, 1993.

99. Si, L. and R. Jin. Flexible Mixture Model for Collaborative Filtering. In Proceedings of
the 20th International Conference on Machine Learning, Washington, D.C., August 2003.

100. Soboroff, I. and C. Nicholas. Combining content and collaboration in text filtering. In

 43

IJCAI'99 Workshop: Machine Learning for Information Filtering, August 1999.
101. Somlo, G. and A. Howe. Adaptive Lightweight Text Filtering. In Proceedings of the 4th

International Symposium on Intelligent Data Analysis, Lisbon, Portugal, September 2001.
102. Statnikov, R. B. and J. B. Matusov. Multicriteria Optimization and Engineering. Chapman

& Hall, 1995.
103. Terveen, L., W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS: A system for

sharing recommendations. Communications of the ACM, 40(3):59-62, 1997.
104. Tran, T. and R. Cohen. Hybrid Recommender Systems for Electronic Commerce. In

Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical Report
WS-00-04, AAAI Press, 2000.

105. Ungar, L. H., and D. P. Foster. Clustering methods for collaborative filtering. In
Recommender Systems. Papers from 1998 Workshop. Technical Report WS-98-08. AAAI
Press, 1998.

106. Wade, W. A grocery cart that holds bread, butter and preferences. NY Times, Jan. 16, 2003.
107. Yang, Y. and B. Padmanabhan. On Evaluating Online Personalization, in Proceedings of

the Workshop on Information Technology and Systems, pp. 35-41, December 2001.
108. Yu, K., X. Xu, J. Tao, M. Ester, and H.-P. Kriegel. Instance Selection Techniques for

Memory-Based Collaborative Filtering. In Proceedings of Second SIAM International
Conference on Data Mining (SDM’02), 2002.

109. Yu, K., A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel. Probabilistic Memory-Based
Collaborative Filtering. IEEE Transactions on Knowledge and Data Engineering,
16(1):56-69, 2004.

110. Zaïane, O. R., J. Srivastava, M. Spiliopoulou, B. M. Masand (eds.). WEBKDD 2002 –
Mining Web Data for Discovering Usage Patterns and Profiles (Lecture Notes in
Computer Science 2703), Springer, 2003.

111. Zhang Y. and J. Callan. Maximum Likelihood Estimation for Filtering Thresholds. In
Proc. of the 24th Annual International ACM SIGIR Conference, New Orleans, LA, 2001.

112. Zhang, Y, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive filtering.
In Proceedings of the 25th Annual International ACM SIGIR Conference, pp. 81-88, 2002.

Gediminas Adomavicius received the PhD degree in computer science from New York
University in 2002. He is an assistant professor in the Department of Information and Decision
Sciences at the Carlson School of Management, University of Minnesota. Dr. Adomavicius’
research focuses on personalization technologies, data mining, and combinatorial auction
mechanisms. He has published more than 20 refereed journal and conference papers in these
areas. He is a member of the ACM, IEEE, and IEEE Computer Society.

Alexander Tuzhilin received Ph.D. in Computer Science from the Courant Institute of
Mathematical Sciences, NYU. He is currently an Associate Professor of Information Systems at
the Stern School of Business, NYU. His current research interests include knowledge discovery
in databases, personalization and CRM technologies. He published widely in leading CS and IS
journals and conference proceedings and served on program committees of numerous CS and IS
conferences. Dr. Tuzhilin was as a Co-Chair of the Third IEEE International Conference on
Data Mining in 2003. He currently serves on the Editorial Boards of the IEEE Transactions on
Knowledge and Data Engineering, the Data Mining and Knowledge Discovery Journal, the
INFORMS Journal on Computing, and the Electronic Commerce Research Journal.

